Parameter Extraction and Characteristics Study for Manganese-Type Lithium-Ion Battery

Natthawuth Somakettarin, Tsuyoshi Funaki

Abstract


In this paper, we propose the battery transient response model and parameter extraction method for studying the dynamic behaviors of Manganese-type Lithium-Ion battery. The background knowledge of the battery structure and its operating principle are also concluded. Several aspects of operating conditions, such as charging and discharging operations, environments of terminal currents and temperatures, are considered through the experiments for understanding the battery behaviors.  The characteristics of internal effective series resistance, battery capacity, and capacity deterioration to the operational and environmental conditions are also evaluated and analyzed physically.  The transient response model and the extracted parameters are validated with a Spice simulation for the practical testing data.  The terminal voltage response shows an acceptable conformity for the experiment and simulation to different periods and amplitudes of pulse currents.


Keywords


Lithium-Ion; Manganese-type; battery characteristics; parameter extraction; transient response model; capacity deterioration

Full Text:

PDF

References


W. Schalkwijk and B. Scrosati, Advances in Lithium-Ion batteries, Springer, 2002. Ch.1. (Book Chapter)

H. Zhang and M. Y. Chow, “Comprehensive dynamic battery modeling for PHEVapplicationsâ€, Power and Energy society general meeting, 2010-IEEE, DOI: 10.1109/PES.2010.5590108, pp. 1-6, 2010. (Conference paper)

Y. Zhang, C. Zhang, and N. Cui, “An adaptive estimation scheme for open-circuit voltage of power Lithium-Ion batteryâ€, Research article in Abstract and applied analysis, Hindawi publishing corp., Vol.2013, Article ID 481976, pp.1-6, 2013. (Article)

A. Rahmoun and H. Biechl, “Modelling of Li-ion batteries using equivalent circuit diagramsâ€, Electrical review, ISSN 0033-2097, R.88NR 7b, pp.152-156, 2012. (Article)

D. Andrea, Battery management systems for large Li-ion battery packs, Artech house press, Boston, 2010. , Ch.1. (Book Chapter)

D. K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, Candace K. Chan, H. Peng, Robert A. Huggins and Yi Cui, “Spinel LiMn2O4 nanorods as Lithium ion battery cathodesâ€, Nano letters, American chemical society, Vol.8(11), pp.3948- 3952, Dec, 2008. (Article)

A. Patil, V. Patil, D. W. Shin, J. W. Choi, D. S. Paik, and S. J. Yoon, “Review issue and challenges facing rechargeable thin film Lithium batteriesâ€, Materials research bulletin 43 on Science direct, pp.1913-1942, Sep, 2008. (Article)

T. Piao, S. M. Parka, C. H. Dohb, and S. I. Moon, “Intercalation of Li-ion into Graphite electrodes studied by AC impedance measurementsâ€, J. Electrochem. Sci., Vol.146(8), pp.2794-2798, 1999. (Article)

M. Urbain, M. Hinaje, S. Raël, B. Davat, and P. Desprez, “Energetical modeling of Li-ion batteriesâ€, Industry Applications Conf., 42nd IAS Annual Meeting conference of IEEE, LA, USA, pp. 714-721, 2007. (Conference paper)

G. W. Ling, X. Zhu, Y. B. He1, Q. S. Song, B. Li, Y. J. Li, Q. H. Yang, and Z. Y. Tang, “Structural and thermal stabilities of spinel LiMn2O4 materials under commercial power batteries cycling and abusive conditionsâ€, Int. J. Electrochem. Sci., Vol.7, pp.2455-2467, 2012. (Article)

P. Arora and Z. J. Zhang, “Battery Separatorsâ€, Chemical Reviews, Vol.104(10), pp.4419-4462, 2004. (Article)

H.J. Bergveld , W.S. Kruijt, and Peter H. L. Notten, Battery management systems: Design by modeling, Philips research vol.1, Springer, 2002, pp.31-52. (Book)

C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, B. S. Jin, H. S. Kim, S. I. Moon, Y. Hwang, and A. Veluchamy, “Thermal behavior of LixCoO2 cathode and disruption of solid electrolyte interphase filmâ€, Bull, Korean Chem. Soc., 30 (4), pp.783–786, 2009. (Article)

M.B. Pinson and M. Z. Bazant, “Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime predictionâ€, Dept. of Physics, MIT, USA. , pp.3-5, 2012. (Report)

M. Parka, X. Zhanga, M. Chunga, G. B. Lessa, and A. M. Sastry, “A review of conduction phenomena in Li-ion batteriesâ€, J. Power sources, Vol.195(24), pp.7904-7929, 2010. (Article)

E. Kuhn, C. Forgez, P. Lagonotte, and G. Friedrich, “Modelling Ni-MH battery using Cauer and Foster structuresâ€, J. Power Sources, Vol58(2), pp. 1490-1497, 2006. (Article)

S.S. Zhang, K. Xu, and T.R. Jow, “Electrochemical impedance study on the low temperature of Li-ion batteriesâ€, Electro- chim. Acta, Vol.49(7), pp.1057-1061, 2004. (Article)

B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test systemâ€, IEEE trans. on instrumentation and measurement, Vol.52(4), 2003. (Article)

M. Chen and G.A. Rincon-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performanceâ€, IEEE Trans. On Energy Conversion, Vol. 21(2), pp.504-511, 2006. (Article)

S.S. Zhang, K. Xu, and T.R. Jow, “The low temperature performance of Li-ion batteriesâ€, J. Power sources, Vol.115(-), pp.137-140, 2003. (Article)

M.A. Roscher, J. Assfalg, and O. S. Bohlen, “Detection of utilizable capacity deterioration in battery systemsâ€, IEEE Trans. On Vehicular Technology, Vol. 60(1), pp.98-103, 2011. (Article)

K. Eberman, P. Gomadam, G. Jain, and E. Scott, “Material and design options for avoiding Lithium plating during chargingâ€, ECS Transactions, Vol. 25(35), pp.47-58, 2010. (Article)




DOI (PDF): https://doi.org/10.20508/ijrer.v5i2.2127.g6600

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4