An Experiment Investigation on an Inclined Solar Distiller with a Stepped-Corrugated Absorber and Evacuated Tubes
Abstract
Keywords
Full Text:
PDFReferences
S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Performance augmentation in flat plate solar collector using MgO/water nanofluid,” Energy Convers Manag, vol. 124, pp. 607–617, Sep. 2016, doi: 10.1016/J.ENCONMAN.2016.07.007.
M. Hatami and D. Jing, “Optimisation of wavy direct absorber solar collector (WDASC) using Al2O3-water nanofluid and RSM analysis,” Appl Therm Eng, vol. 121, pp. 1040–1050, Jul. 2017, doi: 10.1016/J.APPLTHERMALENG.2017.04.137.
W. Kang, Y. Shin, and H. Cho, “Economic analysis of flat-plate and U-tube solar collectors using an Al2O3 nanofluid,” Energies (Basel), vol. 10, no. 11, Nov. 2017, doi: 10.3390/en10111911.
N. K. C. Sint, I. A. Choudhury, H. H. Masjuki, and H. Aoyama, “Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar,” Solar Energy, vol. 155, pp. 608–619, Oct. 2017, doi: 10.1016/J.SOLENER.2017.06.055.
J. Liu, Z. Ye, L. Zhang, X. Fang, and Z. Zhang, “A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector,” Solar Energy Materials and Solar Cells, vol. 136, pp. 177–186, May 2015, doi: 10.1016/J.SOLMAT.2015.01.013.
T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors,” Renew Energy, vol. 39, no. 1, pp. 293–298, Mar. 2012, doi: 10.1016/J.RENENE.2011.08.056.
A. E. Kabeel, M. A. Teamah, M. Abdelgaied, and G. B. Abdel Aziz, “Modified pyramid solar still with v-corrugated absorber plate and PCM as a thermal storage medium,” J Clean Prod, vol. 161, pp. 881–887, Sep. 2017, doi: 10.1016/J.JCLEPRO.2017.05.195.
B. Madhu et al., “Improving the yield of fresh water from conventional and stepped solar still with different nanofluids,” Desalination Water Treat, vol. 100, pp. 243–249, Dec. 2017, doi: 10.5004/dwt.2017.21279.
A. E. Kabeel, Z. M. Omara, F. A. Essa, A. S. Abdullah, T. Arunkumar, and R. Sathyamurthy, “Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles,” Alexandria Engineering Journal, vol. 56, no. 4, pp. 433–438, Dec. 2017, doi: 10.1016/J.AEJ.2017.08.014.
H. Nagar, A. R. Prasad, and S. Singh, “Importance of Solar Energy Technologies for Development of Rural Area in India,” 2017, [Online]. Available: https://www.researchgate.net/publication/319535349
B. Acar, B. Acar, ?. Ba?, and Y. Mah Bal?klar Kayasi Mevki, “Investigation of energy generation at test system designed by use of concentrated photo-voltaic panel and thermoelectric modules,” 2018. [Online]. Available: https://www.researchgate.net/publication/330224740
Y. A. F. El-Samadony and A. E. Kabeel, “Theoretical estimation of the optimum glass cover water film cooling parameters combinations of a stepped solar still,” Energy, vol. 68, pp. 744–750, 2014, doi: 10.1016/j.energy.2014.01.080.
E. Hedayati-Mehdiabadi, F. Sarhaddi, and F. Sobhnamayan, “Energy analysis of a stepped cascade solar still connected to photovoltaic thermalcollector,” International Journal of Automotive and Mechanical Engineering, vol. 14, no. 4, pp. 4805–4825, 2017, doi: 10.15282/ijame.14.4.2017.15.0376.
Z. Saadi, A. Rahmani, S. Lachtar, and H. Soualmi, “Performance evaluation of a new stepped solar still under the desert climatic conditions,” Energy Convers Manag, 2018, doi: 10.1016/j.enconman.2018.06.114.
A. Shyora, K. Patel, and H. Panchal, “Comparative analysis of stepped and single basin solar still in climate conditions of Gandhinagar Gujarat during winter,” International Journal of Ambient Energy, vol. 0, no. 0, pp. 1–11, 2019, doi: 10.1080/01430750.2019.1612781.
A. E. Kabeel, M. M. Khairat Dawood, T. Nabil, and B. E. Alonafal, “Improving the performance of stepped solar still using a graphite and PCM as hybrid store materials with internal reflectors coupled with evacuated tube solar collector,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, 2019, doi: 10.1007/s00231-019-02741-8.
S. W. Sharshir, M. A. Eltawil, A. M. Algazzar, R. Sathyamurthy, and A. W. Kandeal, “Performance enhancement of stepped double slope solar still by using nanoparticles and linen wicks: Energy, exergy and economic analysis,” Appl Therm Eng, vol. 174, no. October 2019, p. 115278, 2020, doi: 10.1016/j.applthermaleng.2020.115278.
V. P. Katekar and S. S. Deshmukh, “Thermoeconomic analysis of solar distillation system with stepped-corrugated absorber plate,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 0, no. 0, pp. 1–20, 2020, doi: 10.1177/0954406220943227.
H. Amiri, “Enhancing the stepped solar still performance using a built-in passive condenser,” Solar Energy, vol. 248, pp. 88–102, Dec. 2022, doi: 10.1016/J.SOLENER.2022.11.006.
M. Mosahebi, S. Rashidi, and M. Mirhosseini, “Experimental investigation of performance of cascade solar water desalination system equipped with internal reflector and concave steps,” J Taiwan Inst Chem Eng, p. 104727, Feb. 2023, doi: 10.1016/J.JTICE.2023.104727.
T. E. M. Atteya and F. Abbas, “Testing a stepped solar still with different sand beds and reflectors,” Case Studies in Thermal Engineering, vol. 43, p. 102782, Mar. 2023, doi: 10.1016/J.CSITE.2023.102782.
S. Kumar, A. Dubey, and G. N. Tiwari, “A solar still augmented with an evacuated tube collector in forced mode,” Desalination, vol. 347, pp. 15–24, 2014, doi: 10.1016/j.desal.2014.05.019.
H. Panchal, R. Sathyamurthy, A. K. Pandey, M. Kumar, T. Arunkumar, and D. K. Patel, “Annual performance analysis of a single-basin passive solar still coupled with evacuated tubes: comprehensive study in climate conditions of Mahesana, Gujarat,” International Journal of Ambient Energy, vol. 40, no. 3, pp. 229–242, 2019, doi: 10.1080/01430750.2017.1378720.
H. Panchal, S. S. Hishan, R. Rahim, and K. K. Sadasivuni, “Solar still with evacuated tubes and calcium stones to enhance the yield: An experimental investigation,” Process Safety and Environmental Protection, vol. 142, pp. 150–155, 2020, doi: 10.1016/j.psep.2020.06.023.
H. N. Panchal, “Enhancement of distillate output of double basin solar still with vacuum tubes,” Journal of King Saud University - Engineering Sciences, vol. 27, no. 2, pp. 170–175, 2015, doi: 10.1016/j.jksues.2013.06.007.
H. Panchal, K. Kumar Sadasivuni, M. Suresh, S. Yadav, and S. Brahmbhatt, “Performance analysis of evacuated tubes coupled solar still with double basin solar still and solid fins,” International Journal of Ambient Energy, vol. 0, no. 0, pp. 1–16, 2018, doi: 10.1080/01430750.2018.1501745.
A. Ali, M. Deyab, A. Ahmad, A. Saeed, and A. Muhanna, “Solar Desalination Augmented with Evacuated-Tube Collector,” JIMEC 2018, pp. 1–10, 2018.
A. I. Shehata et al., “Enhancement of the productivity for single solar still with ultrasonic humidifier combined with evacuated solar collector: An experimental study,” Energy Convers Manag, vol. 208, no. February, p. 112592, 2020, doi: 10.1016/j.enconman.2020.112592.
M. Bhargva and A. Yadav, “Experimental comparative study on a solar still combined with evacuated tubes and a heat exchanger at different water depths,” International Journal of Sustainable Engineering, vol. 13, no. 3, pp. 218–229, 2020, doi: 10.1080/19397038.2019.1653396.
M. Patel, C. Patel, and H. Panchal, “Performance analysis of conventional triple basin solar still with evacuated heat pipes, corrugated sheets and storage materials,” Groundw Sustain Dev, vol. 11, p. 100387, 2020, doi: 10.1016/j.gsd.2020.100387.
C. L. Saw, Advancement in Emerging Technologies and Engineering. 2020.
S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Khosravi, and M. Sharifpur, “An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser,” Sustainable Energy Technologies and Assessments, vol. 50, p. 101857, Mar. 2022, doi: 10.1016/J.SETA.2021.101857.
H. Moghadam and M. Samimi, “Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: Productivity optimisation using a Box-Behnken design model,” Desalination, vol. 542, p. 116092, Nov. 2022, doi: 10.1016/J.DESAL.2022.116092.
H. Liu et al., “Performance enhancement of solar desalination using evacuated tubes, ultrasonic atomisers, and cobalt oxide nanofluid integrated with cover cooling,” Process Safety and Environmental Protection, vol. 171, pp. 98–108, Mar. 2023, doi: 10.1016/J.PSEP.2023.01.009.
M.A. Alghoul et al., “Experimental investigation of the effect of different solar still configurations on productivity and efficiency.” Solar Energy, 2021.
A. Al-Waeli et al., “Performance analysis of a double-basin solar still with an integrated heat exchanger,” Renewable Energy, 2021.
H. Salmi et al., “Performance evaluation of a pyramid-shaped solar still with thermal energy storage,” Applied Thermal Engineering, 2020.
Shelare, S.; Kumar, R.; Gajbhiye, T.; Kanchan, S. “Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges,” Energies 2023, 16, 2901.
U. WATER, “The United Nations World Water Development Report 2019,” 2019.
V. Katekar, “BRACKISH WATER DISTILLATION SYSTEM FOR GOREWADAWATER GOREWADAWATER TREATMENT PLANT, NAGPUR BY USING,” no. March, 2020.
H. Panchal, “Performance Investigation on Variations of Glass Cover Thickness on Solar Still: Experimental and Theoretical Analysis,” Technology and Economics of Smart Grids and Sustainable Energy, vol. 1, no. 1, 2016, doi: 10.1007/s40866-016-0007-0.
M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, and H. El-Ghetany, “Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM),” Desalination, vol. 381, pp. 26–37, 2016, doi: 10.1016/j.desal.2015.11.031.
F. Sarhaddi, F. Farshchi Tabrizi, H. Aghaei Zoori, and S. A. H. S. Mousavi, “Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis,” Energy Convers Manag, vol. 133, pp. 97–109, 2017, doi: 10.1016/j.enconman.2016.11.044.
F. S. and F. S. E. Hedayati-Mehdiabadi, “Energy analysis of a stepped cascade solar still connected to photovoltaic thermal collector,” International Journal of Automotive and Mechanical Engineering, vol. 53, no. 9, pp. 1689–1699, 2017, doi: 10.1017/CBO9781107415324.004.
A. Johnson et al., “A Thermal Model for Predicting the Performance of a Solar Still with Fresnel Lens,” Water (Basel), vol. 11, no. 9, p. 1860, 2019, doi: 10.3390/w11091860.
P. Pal, R. Dev, D. Singh, and A. Ahsan, “Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi–wick basin type double slope solar still,” Desalination, vol. 447, no. July, pp. 55–73, 2018, doi: 10.1016/j.desal.2018.09.006.
Les. Kirkup and R. B. (Robert B.) Frenkel, An introduction to uncertainty in measurement using the GUM (guide to the expression of uncertainty in measurement). Cambridge University Press, 2006.
S. M. Elshamy and E. M. S. El-Said, “Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber,” J Clean Prod, vol. 195, pp. 328–339, Sep. 2018, doi: 10.1016/J.JCLEPRO.2018.05.243.
S. BabuK, “National Conference on Green Engineering and Technologies for Sustainable Future-2014 Experimentation and performance analysis of single slope single corrugated basin solar still”, [Online]. Available: www.jchps.com
S. M. Shalaby, E. El-Bialy, and A. A. El-Sebaii, “An experimental investigation of a v-corrugated absorber single-basin solar still using PCM,” Desalination, vol. 398, pp. 247–255, Nov. 2016, doi: 10.1016/J.DESAL.2016.07.042.
S. Rashidi, M. Bovand, N. Rahbar, and J. A. Esfahani, “Steps optimisation and productivity enhancement in a nanofluid cascade solar still,” Renew Energy, vol. 118, pp. 536–545, Apr. 2018, doi: 10.1016/J.RENENE.2017.11.048.
C. Yadav and M. Kumar, “Recent Advances in Stepped and Weir Type Solar Still,” 2016.
A. S. Abdullah, “Improving the performance of stepped solar still,” Desalination, vol. 319, pp. 60–65, 2013, doi: 10.1016/j.desal.2013.04.003.
G. N. Tiwari and A. T. Shyam, “Energy Systems in Electrical Engineering Handbook of Solar Energy Theory, Analysis and Applications.” [Online]. Available: http://www.springer.com/series/13509
G. N. Tiwari and L. Sahota, “Green Energy and Technology Advanced Solar-Distillation Systems Basic Principles, Thermal Modeling, and Its Application.” [Online]. Available: http://www.springer.com/series/8059.
DOI (PDF): https://doi.org/10.20508/ijrer.v13i3.14165.g8803
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4