Frequency and load effects on rectifier bridges and active circuits on mechanical energy harvested using piezoelectric materials

YOUSSEF EL HMAMSY, Chouaib Ennawaoui, Abdelowahed Hajjaji, El Mehdi Laadissi, El Mehdi Loualid, Mohamed Aymen Ben achour, Oussama Laayati, Ahmed Chebak

Abstract


Today, with the worldwide surge in the price of oil, the energy issue has become an important topic and the possibility of exploiting ambient energy is receiving renewed attention. Thus in this study, we are interested in the devices of recovery of piezoelectric energy of vibration whose final objective is to study the consumption bridge of the diodes and to compare it with the active circuits. The idea is first to extend the life of the battery. Then a second time makes the sensor completely autonomous from an energy point of view.

  In this work, we will study the useful characteristics of the diode. For the sake of clarity and under what conditions it can be used, we will refer to the characteristic quantities presented by the manufacturer. Each parameter is defined for specific conditions of use. These conditions are specified and correspond to the measurement method used. In addition, we will focus on studying power dissipation in diodes in a range of frequencies, and the possibility of replacing the diode bridge with another active circuit as LTC3588-2 and LT4320 in certain conditions consume less energy than diodes. The open circuit tests performed on the transducer allowed us to evaluate the average power recovered at 1.5 mW on an optimal load resistance of 20 KW. The signal provided by the transducer was then shaped by simulation. For this, the characteristics of the real diodes of the series 1 N 400X were used, and with the capacitor of 50 µF, a power of 1,41 mW was obtained on an optimal load resistance of 18,5 KW. The management circuit used is a full-wave rectifier in its voltage doubler topology and with the obtained results, its efficiency is evaluated at 35 %.


Keywords


Energy harvesting; Piezoelectric; Diode losses; Diode characteristics; Bridge rectifier Circuit LT4320; Circuit LTC3588-2

Full Text:

PDF

References


M. Lallart, L. Garbuio, L. Petit, C. Richard, D. Guyomar, Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 (2008) 2119–2130. https://doi.org/10.1109/TUFFC.912.

M. Yuan, Z. Cao, J. Luo, Characterization the influences of diodes to piezoelectric energy harvester, Int. J. Smart Nano Mater. 9 (2018) 151–166. https://doi.org/10.1080/19475411.2018.1454532.

Y. Elhmamsy, C. Ennawaoui, A. Hajjaji, Y. Boughaleb, Theoretical study and Simulation method for optimizing the performance of advanced Energy Harvesting techniques, IOP Conf. Ser. Mater. Sci. Eng. 948 (2020) 012014. https://doi.org/10.1088/1757-899X/948/1/012014.

C. Ennawaoui, H. Lifi, A. Hajjaji, A. Elballouti, S. Laasri, A. Azim, Mathematical modeling of mass spring’s system: Hybrid speed bumps application for mechanical energy harvesting, Eng. Solid Mech. (2019) 47–58. https://doi.org/10.5267/j.esm.2018.11.002.

M.B. Khan, D.H. Kim, J.H. Han, H. Saif, H. Lee, Y. Lee, M. Kim, E. Jang, S.K. Hong, D.J. Joe, T.-I. Lee, T.-S. Kim, K.J. Lee, Y. Lee, Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit, Nano Energy. 58 (2019) 211–219. https://doi.org/10.1016/j.nanoen.2019.01.049.

A. Hajjaji, D. Guyomar, S. Touhtouh, S. Pruvost, Y. Boughaleb, M. Rguiti, C. Courtois, A. Leriche, K. Benkhouja, Nonlinearity and scaling behavior in a soft lead zirconate titanate piezoceramic, J. Appl. Phys. 108 (2010) 064103. https://doi.org/10.1063/1.3486510.

C. Ennawaoui, H. Lifi, A. Hajjaji, C. Samuel, M. Rguiti, S. Touhtouh, A. Azim, C. Courtois, Dielectric and mechanical optimization properties of porous poly(ethylene? co ?vinyl acetate) copolymer films for pseudo?piezoelectric effect, Polym. Eng. Sci. 59 (2019) 1455–1461. https://doi.org/10.1002/pen.25132.

M. Lallart, G. Lombardi, Synchronized Switch Harvesting on ElectroMagnetic System: a nonlinear technique for hybrid energy harvesting based on active inductance, Energy Convers. Manag. 203 (2020) 112135. https://doi.org/10.1016/j.enconman.2019.112135.

G. Shi, J. Chen, Y. Peng, M. Shi, H. Xia, X. Wang, Y. Ye, Y. Xia, A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique, Micromachines. 11 (2020) 80. https://doi.org/10.3390/mi11010080.

A. Brenes, A. Morel, J. Juillard, E. Lefeuvre, A. Badel, Maximum power point of piezoelectric energy harvesters: a review of optimality condition for electrical tuning, Smart Mater. Struct. 29 (2020) 033001. https://doi.org/10.1088/1361-665X/ab6484.

M. Rajarathinam, S.F. Ali, Energy generation in a hybrid harvester under harmonic excitation, Energy Convers. Manag. 155 (2018) 10–19. https://doi.org/10.1016/j.enconman.2017.10.054.

M. Lallart, W.-J. Wu, L. Yan, S.-W. Hung, Inductorless Synchronized Switch Harvesting Using a Piezoelectric Oscillator, IEEE Trans. Power Electron. 35 (2020) 2585–2594. https://doi.org/10.1109/TPEL.2019.2925709.

A. Brenes, A. Morel, J. Juillard, E. Lefeuvre, A. Badel, Maximum power point of piezoelectric energy harvesters: a review of optimality condition for electrical tuning, Smart Mater. Struct. 29 (2020) 033001. https://doi.org/10.1088/1361-665X/ab6484.

L. Wu, P. Zhu, M. Xie, A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting, Sensors. 21 (2021) 615. https://doi.org/10.3390/s21020615.

Y.E. Hmamsy, C. Ennawaoui, A. Hajjaji, Topology network effects for DSSH circuit on vibration energy harvesting using piezoelectric materials, Indones. J. Electr. Eng. Comput. Sci. 25 (2022) 721. https://doi.org/10.11591/ijeecs.v25.i2.pp721-731.

A. Hajjaji, D. Guyomar, S. Pruvost, S. Touhtouh, K. Yuse, Y. Boughaleb, Temperature/electric field scaling in Ferroelectrics, Phys. B Condens. Matter. 405 (2010) 2757–2761. https://doi.org/10.1016/j.physb.2010.03.023.

C. Ennawaoui, A. Hajjaji, C. Samuel, E. Sabani, A. Rjafallah, I. Najihi, E.M. Laadissi, E.M. Loualid, M. Rguiti, A.E. Ballouti, A. Azim, Piezoelectric and Electromechanical Characteristics of Porous Poly(Ethylene-co-Vinyl Acetate) Copolymer Films for Smart Sensors and Mechanical Energy Harvesting Applications, Appl. Syst. Innov. 4 (2021) 57. https://doi.org/10.3390/asi4030057.

Y.E. Hmamsy, C. Ennawaoui, E.M. Loualid, E.M. Laadissi, A. Balhamri, A. Hajjaji, Mathematical model of Mono-DSSH network topology of energy harvesting optimization, in: 2022 11th Int. Symp. Signal Image Video Commun. ISIVC, IEEE, El Jadida, Morocco, 2022: pp. 1–5. https://doi.org/10.1109/ISIVC54825.2022.9800215.

Z. Malki, C. Ennawaoui, A. Hajjaji, M. El Jouad, Y. Boughaleb, Simulation of piezoelectric wave energy harvesting circuit, Mater. Today Proc. 66 (2022) 416–420. https://doi.org/10.1016/j.matpr.2022.05.587.

Y. El Hmamsy, C. Ennawaoui, E.M. Laadissi, E.M. Loualid, A. Hajjaji, Optimized piezoelectric energy harvesting circuit using DC/DC converter, Mater. Today Proc. 66 (2022) 473–478. https://doi.org/10.1016/j.matpr.2022.07.219.

E. Mehdi Laadissi, E. Filali Anas, M. Zazi, K. Jaouad, “Parameter Identification of a Lithium-Ion Battery Model Using Levenberg-Marquardt Algorithm,” J. Eng. Appl. Sci. 14 (2019) 1267–1273. https://doi.org/10.36478/jeasci.2019.1267.1273.

M. Balato, L. Costanzo, A. Lo Schiavo, M. Vitelli, Optimization of both Perturb & Observe and Open Circuit Voltage MPPT Techniques for Resonant Piezoelectric Vibration Harvesters feeding bridge rectifiers, Sens. Actuators Phys. 278 (2018) 85–97. https://doi.org/10.1016/j.sna.2018.05.017.

M. Derraz, E. Sabani, C. Ennawaoui, E.M. Loualid, E.M. Laadissi, A. Balhamri, A. Hajjaji, A.E. Azim, Morphological and ferroelectric characterizations of porous poly (ethylene?co?vinyl acetate) copolymer films prepared by coextrusion and pressing methods for pseudo?piezoelectric effect, Mater. Today Proc. 66 (2022) 196–201. https://doi.org/10.1016/j.matpr.2022.04.475.

C. Ennawaoui, A. Hajjaji, A. Azim, Y. Boughaleb, Theoretical modeling of power harvested by piezo-cellular polymers, Mol. Cryst. Liq. Cryst. 628 (2016) 49–54. https://doi.org/10.1080/15421406.2015.1137679.

M. Edla, Y.Y. Lim, M. Deguchi, R.V. Padilla, I. Izadgoshasb, An Improved Self-Powered H-Bridge Circuit for Voltage Rectification of Piezoelectric Energy Harvesting System, IEEE J. Electron Devices Soc. 8 (2020) 1050–1062. https://doi.org/10.1109/JEDS.2020.3025554.

Alldatasheet, (n.d.). https://www.alldatasheet.com/ (accessed September 13, 2022).

J. Sadecki, W. Marszalek, Complex oscillations and two-parameter bifurcations of a memristive circuit with diode bridge rectifier, Microelectron. J. 93 (2019) 104636. https://doi.org/10.1016/j.mejo.2019.104636.

A. Erturk, D.J. Inman, Issues in mathematical modeling of piezoelectric energy harvesters, Smart Mater. Struct. 17 (2008) 065016. https://doi.org/10.1088/0964-1726/17/6/065016.

F. Qian, T.-B. Xu, L. Zuo, Design, optimization, modeling and testing of a piezoelectric footwear energy harvester, Energy Convers. Manag. 171 (2018) 1352–1364. https://doi.org/10.1016/j.enconman.2018.06.069.

J. Wang, Z. Shi, H. Xiang, G. Song, Modeling on energy harvesting from a railway system using piezoelectric transducers, Smart Mater. Struct. 24 (2015) 105017. https://doi.org/10.1088/0964-1726/24/10/105017.

Z. Chen, Y. Xia, J. He, Y. Xiong, G. Wang, Elastic-electro-mechanical modeling and analysis of piezoelectric metamaterial plate with a self-powered synchronized charge extraction circuit for vibration energy harvesting, Mech. Syst. Signal Process. 143 (2020) 106824. https://doi.org/10.1016/j.ymssp.2020.106824.

LTC3588-2 Datasheet and Product Info | Analog Devices, (n.d.). https://www.analog.com/en/products/ltc3588-2.html (accessed September 18, 2022).

LT4320/LT4320-1 - Ideal Diode Bridge Controller, (n.d.) 14.

A. Brenes, A. Morel, D. Gibus, C.-S. Yoo, P. Gasnier, E. Lefeuvre, A. Badel, Large-bandwidth piezoelectric energy harvesting with frequency-tuning synchronized electric charge extraction, Sens. Actuators Phys. 302 (2020) 111759. https://doi.org/10.1016/j.sna.2019.111759.

Y. El Hmamsy, C. Ennawaoui, I. Najihi, A. Hajjaji, The Synchronized Electrical Charge Extraction Regulator for Harvesting Energy Using Piezoelectric Materials, in: S. Motahhir, B. Bossoufi (Eds.), Digit. Technol. Appl., Springer International Publishing, Cham, 2021: pp. 1517–1527. https://doi.org/10.1007/978-3-030-73882-2_138.




DOI (PDF): https://doi.org/10.20508/ijrer.v13i2.13850.g8759

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4