Experimentation and Performance Parametric Optimization of Soybean-Based Biodiesel Fired Variable Compression Ratio CI Engine Using Taguchi Method
Abstract
In this study, the performance of a variable CR-type CI engine is investigated experimentally and optimized using Taguchi methods. Fuels consist of Common Diesel Fuel (CDF), 10%, and 20% mixes of soybean biodiesel. A novel single-step transesterification method is employed in this work to create biodiesel. Investigations are conducted on the engine's entire performance, including the braking power (BP), specific fuel consumption (SFC), CO, and NOx emissions. The results show that the kinds of fuel have the most impact on braking power, contributing 62.25% and that the load, types of fuel, and load have the largest impacts on SFC, CO, and NOx emission, contributing 89.7%, 49.62%, and 57.54%, respectively. With CDF, SOYA B10, and SOYA B20, respectively, SFC and CO emission percentage decreases of 60%, 50%, and 45% and 66.66%, 4%, and 6.7% have been observed. 3.66 kW of braking power, 0.34 kg/kWh of SFC, 0.028% of CO emission, and 182 ppm of NOx emission are the optimal performances that are attained when providing BP more weight. 2.62 kW of brake power, 0.91 kg/kWh of SFC, 0.04% of CO emission, and 28 ppm of NOx emission are the optimal performance results obtained when NOx is given greater weight.
Keywords
Full Text:
PDFReferences
F. L. P. Resende, Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals. Elsevier B.V., 2014.
S. Chozhavendhan, M. Vijay Pradhap Singh, B. Fransila, R. Praveen Kumar, and G. Karthiga Devi, “A review on influencing parameters of biodiesel production and purification processes,” Curr. Res. Green Sustain. Chem., vol. 1–2, no. April, pp. 1–6, 2020, doi: 10.1016/j.crgsc.2020.04.002.
P. L. Boey, G. P. Maniam, and S. A. Hamid, “Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review,” Chem. Eng. J., vol. 168, no. 1, pp. 15–22, 2011, doi: 10.1016/j.cej.2011.01.009.
I. J. Stojkovi?, O. S. Stamenkovi?, D. S. Povrenovi?, and V. B. Veljkovi?, “Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification,” Renew. Sustain. Energy Rev., vol. 32, pp. 1–15, 2014, doi: 10.1016/j.rser.2014.01.005.
D. Huang, H. Zhou, and L. Lin, “Biodiesel: An alternative to conventional fuel,” Energy Procedia, vol. 16, no. PART C, pp. 1874–1885, 2012, doi: 10.1016/j.egypro.2012.01.287.
H. Raheman, P. C. Jena, and S. S. Jadav, “Performance of a diesel engine with blends of biodiesel (from a mixture of oils) and high-speed diesel,” Int. J. Energy Environ. Eng., vol. 4, no. 1, pp. 1–9, 2013, doi: 10.1186/2251-6832-4-6.
H. Febriansyah, F. Budi Utomo, and S. Suminto, “The Readiness of Indonesia to Implement Blended Biodiesel B30,” E3S Web Conf., vol. 190, 2020, doi: 10.1051/e3sconf/202019000013.
M. Sivakumar, N. Shanmuga Sundaram, R. Ramesh kumar, and M. H. Syed Thasthagir, “Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine,” Renew. Energy, vol. 116, pp. 518–526, 2018, doi: 10.1016/j.renene.2017.10.002.
M. Effendy, A. Surono, E. Saputra, and N. A. Nugraha, “Performance and smoke opacity of compression-ignition engine using used-waste oil,” Case Stud. Therm. Eng., vol. 26, no. April, p. 101063, 2021, doi: 10.1016/j.csite.2021.101063.
B. Venkatanarayana, C. Ratnam, R. U. Rao, and K. PrasadaRao, “Multi-response optimization of DI diesel engine performance parameters using Karanja methyl ester by applying Taguchi-based principal component analysis,” Biofuels, vol. 8, no. 1, pp. 49–57, 2017, doi: 10.1080/17597269.2016.1200863.
T. Agrawal, R. Gautam, S. Agrawal, V. Singh, M. Kumar, and S. Kumar, “Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using taguchi method, multiple regression and artificial neural network,” Sustain. Futur., vol. 2, no. December 2019, p. 100039, 2020, doi: 10.1016/j.sftr.2020.100039.
N. A. Ansari, A. Sharma, and Y. Singh, “Performance and emission analysis of a diesel engine implementing polanga biodiesel and optimization using Taguchi method,” Process Saf. Environ. Prot., vol. 120, pp. 146–154, 2018, doi: 10.1016/j.psep.2018.09.009.
P. C. Gonçalves, L. P. C. Monteiro, and L. de S. Santos, “Multi-objective optimization of a biodiesel production process using process simulation,” J. Clean. Prod., vol. 270, p. 122322, 2020, doi: 10.1016/j.jclepro.2020.122322.
B. Deepanraj, M. Srinivas, N. Arun, G. Sankaranarayanan, and P. Abdul Salam, “Comparison of jatropha and karanja biofuels on their combustion characteristics,” Int. J. Green Energy, vol. 14, no. 15, pp. 1231–1237, 2017, doi: 10.1080/15435075.2017.1328420.
O. Ogunkunle and N. A. Ahmed, “Overview of biodiesel combustion in mitigating the adverse impacts of engine emissions on the sustainable human–environment scenario,” Sustain., vol. 13, no. 10, 2021, doi: 10.3390/su13105465.
H. V. Rajammagari and M. W. Mohmad, “The effect of mixed nanoadditive?blended diesel–water emulsion on the performance, combustion, and emission characteristics of a DI diesel engine,” Heat Transf., vol. 49, no. 6, pp. 3531–3548, 2020, doi: 10.1002/htj.21786.
S. Yunus, A. A. Rashid, N. R. Abdullah, R. Mamat, and S. A. Latip, “Emissions of transesterification Jatropha-Palm blended biodiesel,” Procedia Eng., vol. 68, pp. 265–270, 2013, doi: 10.1016/j.proeng.2013.12.178.
S. Sayyed, R. K. Das, and K. Kulkarni, “Performance assessment of multiple biodiesel blended diesel engine and NOx modeling using ANN,” Case Stud. Therm. Eng., vol. 28, no. August, p. 101509, 2021, doi: 10.1016/j.csite.2021.101509.
A. A. S. A. El-gharabawy, “Cost Analysis for Biodiesel Production from Waste Cooking Oil Plant in Egypt,” Int. J. Smart grid, vol. 1, no. 1, 2017, doi: 10.20508/ijsmartgrid.v1i1.2.g2.
F. Ayadi, I. Colak, I. Garip, and H. I. Bulbul, “Targets of Countries in Renewable Energy,” 9th Int. Conf. Renew. Energy Res. Appl. ICRERA 2020, pp. 394–398, 2020, doi: 10.1109/ICRERA49962.2020.9242765.
A. Shahid, “Smart Grid Integration of Renewable Energy Systems,” 7th Int. IEEE Conf. Renew. Energy Res. Appl. ICRERA 2018, vol. 5, no. Ii, pp. 944–948, 2018, doi: 10.1109/ICRERA.2018.8566827.
H. Wkh et al., “Nujoom2016.Pdf,” vol. 5, 2016.
Y. Tominaga, M. Tanaka, H. Eto, Y. Mizuno, N. Matsui, and F. Kurokawa, “Design Optimization of Renewable Energy System Using EMO,” 6th IEEE Int. Conf. Smart Grid, icSmartGrids 2018, pp. 258–263, 2019, doi: 10.1109/ISGWCP.2018.8634438.
S. Parida, S. Misra, and D. K. Sahu, “Development of Process Technology to Produce Low Cost Biofuel I -Minimization of Operating Parameters during Preparation of Biodiesel,” Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 72–78, 2011, doi: 10.3384/ecp1105772.
M. Naik, L. C. Meher, S. N. Naik, and L. M. Das, “Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil,” Biomass and Bioenergy, vol. 32, no. 4, pp. 354–357, 2008, doi: 10.1016/j.biombioe.2007.10.006.
T. Issariyakul, M. G. Kulkarni, L. C. Meher, A. K. Dalai, and N. N. Bakhshi, “Biodiesel production from mixtures of canola oil and used cooking oil,” Chem. Eng. J., vol. 140, no. 1–3, pp. 77–85, 2008, doi: 10.1016/j.cej.2007.09.008.
S. S. Sabyasachi Singh, D. K. Ray, S. Misra, S. Parida, and D. K. Sahu, “Comparative Study on Performance of Straight Vegetable Oil and its FAME with respect to Common Diesel Fuel in Compression Ignition Engine,” Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, vol. 57, pp. 3549–3556, 2011, doi: 10.3384/ecp110573549.
S. Kumar and S. K. Shukla, “Study of degradation of quality of soyabean biodiesel with storage time and its emissions on various loads,” Mater. Today Proc., vol. 5, no. 11, pp. 23177–23192, 2018, doi: 10.1016/j.matpr.2018.11.049.
C. J. Mueller, A. L. Boehman, and G. C. Martin, “Investigation of the origin of increased NOx emissions in a heavy-duty compression-ignition engine fueled with soy biodiesel,” ACS Natl. Meet. B. Abstr., vol. 2, no. 1, 2009.
T. Mohapatra, B. N. Padhi, and S. S. Sahoo, “Analytical investigation and performance optimization of a three fluid heat exchanger with helical coil insertion for simultaneous space heating and water heating,” Heat Mass Transf. und Stoffuebertragung, vol. 55, no. 6, pp. 1723–1740, 2019, doi: 10.1007/s00231-018-02545-2.
DOI (PDF): https://doi.org/10.20508/ijrer.v13i1.13486.g8686
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4