Effects of Blade Root Dimensions on Physical and Mechanical Characteristics of a Small Wind Turbine Blade

Sandip Achutrao Kale, Mohammed H. Rady, Ravindra K. Garmode, Mahendra Gooroochurn

Abstract


Small wind turbines have the potential to act as a complementary clean energy source to solar PV, especially during nighttime. However, the generally less attractive payback of small scale wind turbines has restrained its widespread application, and one way to improve their cost effectiveness is by improving the efficiency, for which blade design is a crucial factor. The blade design is a complex but interesting process and still demands continuous research at various stages. This research paper presents the effect of flat rectangular root dimensions on blade mass, stresses, strain and deformation for a fixed pitch, horizontal axis small wind turbine blade of 2.5 m length. For the three considered variables root length, width and thickness, four levels of dimensions are selected for each which yields 64 blade models. A total of 16 blade models with different root dimensions are finalized through the Taguchi method and investigated using finite element analysis. The effects of these variables on five characteristics, namely: blade mass, stresses in the blade main body, stresses in the blade root and connecting portion, deformation and strain are studied. Analysis of variance is carried out for all these independent and dependent variables. The results indicate that the thickness, length and width are the most, intermediate and least influencing variables respectively, and cause significant changes in these five characteristics of the blade.

Keywords


ANOVA; finite element analysis; small wind turbine; wind turbine; wind turbine blade

Full Text:

PDF

References


P. A. Costa Rocha, J. W. Carneiro de Araujo, R. J. Pontes Lima, M. E. Vieira da Silva, D. Albiero, C.F. de Andrade, F.O.M. Carneiro, “The Effects of Blade Pitch Angle on the Performance of Small-scale Wind Turbine in Urban Environments”, Energy, 2018. DOI: 10.1016/j.energy.2018.01.096.

B. M. Nagai, K. Ameku and J. N. Roy, “Performance of a 3 kW wind turbine generator with variable pitch control system”, Applied Energy, Vol. 86, No. 9, pp. 1774–1782, 2009. DOI. 10.1016/j.apenergy.2008.12.018

David B. Fenn and Larry A. Viterna, “Fixed Pitch Wind Turbines”, National Aeronautics and Space Administration, Lewis Research Center, Ohio 1978.

Y. Ma, Z. Hu, J. Wang, R. Lai, Y. Xing, “Research on fixed-pitch wind turbine running in deep stall region”, World Non-Grid-Connected Wind Power and Energy Conference, pp. 267–272, 2009. DOI:10.1109/WNWEC.2009.5335802.

L. Wang, X. Tang, X. Liu, “Blade Design Optimisation for Fixed-Pitch Fixed-Speed Wind Turbines”, ISRN Renewable Energy, pp. 1– 8, 2012. DOI:10.5402/2012/682859.

M. Á. H. López, R. R. López, J. J. A. Pimentel, F. A. Acevedo, A. R. Jaramillo, “Experimental testing bench for variable pitch wind turbines control strategies”, Ingeniare, Vol. 29, No. 1, pp. 8–17. DOI: 10.4067/S0718-33052021000100008.

A. Faker, Z. Hajej, S. Dellagi and S. Bouslikhane, "Optimized integrated Maintenance, Production and Spare Parts Strategy for a Wind Turbine System," 2021 10th International Conference on Renewable Energy Research and Application, pp. 59-64, 2021. DOI: 10.1109/ICRERA52334.2021.9598695.

J. O. Mo, Y. H. Lee, “CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method”, Journal of Mechanical Science and Technology, Vol. 26, No. 1, pp. 81–92, 2012. DOI:10.1007/s12206-011-1014-7.

P. Jamieson and L. Morgan, “Trends, Prospects and R&D Directions in Wind Turbine Technology”, In Comprehensive Renewable Energy, Second Edition, Elsevier, pp. 817–853, 2022. DOI: 10.1016/b978-0-12-819727-1.00176-x.

S. A. Kale and S. N. Sapali, “Development and Field Testing of an Inclined Flanged Compact Diffuser for a Micro Wind Turbine,” ASME International Mechanical Engineering Congress and Exposition Proceedings, Vol. 6B, American Society of Mechanical Engineers. 2014, DOI:10.1115/IMECE201437883.

R. Soto-Valle, S. Bartholomay, M. Manolesos, C. N. Nayeri and C. Oliver Paschereit, "On the Influence of trip strips on Rotor Blade Measurements," 2020 9th International Conference on Renewable Energy Research and Application, 2020, pp. 188-195, DOI: 10.1109/ICRERA49962.2020.9242848.

G. B. Taware, S. H. Mankar, V. B. Ghagare, G. P. Bharambe, S. A. Kale, “Vibration analysis of a small wind turbine blade”, International Journal of Engineering and Technology, Vol. 8, No. 5, pp. 2121-2126, 2016.

H. B. Zina, M. Chaabane, M. Allouche and S. Abderrahim, “A Novel fuzzy Control Strategy for Maximum Power Point Tracking of Wind Energy Conversion System”, International Journal of Smart Grid, Vol. 3, No. 3, pp. 120-127, 2019.

T. V. Kucuk and S. Oncu, "Wind Energy Conversion System With PDM Controlled Converter," 2021 10th International Conference on Renewable Energy Research and Application, pp. 136-140, 2021. DOI: 10.1109/ICRERA52334.2021.9598618.

H. Muhsen, W. Al-Kouz and Khan, W. “Small wind turbine blade design and optimization”, Symmetry, 12(18),2020. DOI: 10.3390/SYM12010018.

M. Stepien, M. Kulak, K. Józwik, “’Fast Track’Analysis of Small Wind Turbine Blade Performance”, Energies, Vol. 13, No. 21, 2020. DOI:10.3390/en13215767.

M. Mohammadi, A. Mohammadi, S. Farahat, “A New Method for Horizontal Axis Wind Turbine (HAWT) Blade Optimization”, International Journal of Renewable Energy Development, Vol. 5, No. 1, pp. 1-8, 2016. DOI: 10.14710/ijred.5.1.1-8.

F. Filli, A. M Mahmud, M. Bayray, M. Tesfay, P. Gebray, “Design and Manufacture of 1kW Wind Turbine Blades”, Momona Ethiopian Journal of Science, 12(2), pp. 173–196, 2021. DOI:10.4314/mejs.v12i2.2.

S. Kale and J. Hugar, “Static strength design of small wind turbine blade using finite element analysis and testing”. In ASME International Mechanical Engineering Congress and Exposition, Proceedings, American Society of Mechanical Engineers, Vol. 4B, 2015. DOI. 10.1115/IMECE201553485.

Choi, D. K., Pyeon, B. D., Lee, S. Y., Lee, H. G., & Bae, J. S., “Structural design, analysis, and testing of a 10 kW fabric-covered wind turbine blade”, Energies, 13(12) 2020. DOI:10.3390/en13123276.

Babawarun, T., Ho, W. H., and Ngwangwa, H., “Stress validation of finite element model of a small-scale wind turbine blade”, Journal of Energy in Southern Africa, 30(2), pp. 87–97 2019. DOI:10.17159/2413-3051/2019/v30i2a6355.

R. K. Garmode, V. R. Gaval, S. A. Kale and S. D. Nikhade, “Comprehensive evaluation of materials for small wind turbine blades using various MCDM techniques”, Inernational Journal of Renewable Energy Research, vol. 12(2), pp. 981-992, 2022. DOI:10.20508/ijrer.v12i2.12992.g8481.

L. P. Maskepatil, A. U. Gandigude, and S. A. Kale, “Selection of material for wind turbine blade by analytic hierarchy process (AHP) method”, Appl. Mech. Mater., vol. 612, pp. 145–150, 2014. DOI: 10.4028/www.scientific.net/AMM.612.145

J. Taghinezhad, R. Alimardani, M. Masdari, E. Mahmoodi, “Performance optimization of a dual-rotor ducted wind turbine by using response surface method”, Energy Conversion and Management: X, 12, 2021. DOI:10.1016/j.ecmx.2021.100120.

T. A. Miliket, M. B. Ageze, M. T. Tigabu, M. A. Zeleke, “Experimental characterizations of hybrid natural fiber-reinforced composite for wind turbine blades”, Heliyon, Vol. 8. DOI:10.1016/j.heliyon.2022.e09092

E. Hüner, “Optimization of axial flux permanent magnet generator by Taguchi experimental method”, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 68, pp. 409–419 , 2020.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13283.g8518

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4