Analysis of pyrolysis process for Spirulina and Scenedesmus microalga in a rotary kiln and the composition of their resultant bio-oils

Bothwell Nyoni, Shanganyane Percy Hlangothi, Bongibethu Msekeli Hlabano-Moyo

Abstract


A study of the pyrolysis of Spirulina and Scenedesmus microalgae in a rotary kiln is presented in this work. Thermogravimetric analysis of the two types of microalgae was performed prior to the actual pyrolysis in a bench scale rotary kiln that was equipped with a vapor condensation system. Thermogravimetric analysis revealed that the pyrolysis process of the two microalgae reaches peak reactivity at 335 – 345 ?C. The bio-oils synthesized using the rotary kiln contained citronellyl iso-valerate (23.71 %) and phytol (13.49 %) for Scenedesmus and citronellyl iso-valerate (11.26 %), palmitic acid (10.7 %), phytol (7.07 %) and decanamide (6.11 %) for Spirulina. Furthermore, the proportion of compound classes in bio-oil was dominated by fatty acids, fatty acid esters and alcohols in the proportions 8.38, 31.3, 21.45 % and 15.38, 14.74, 16.18 % for Scenedesmus and Spirulina, respectively. However, detrimental nitrogen and sulfur containing heterocyclic compounds were found to be present in bio-oil. Results from this work suggest that algal biomass is a promising feedstock for bio-oil synthesis provided that the available downstream processes can reduce the nitrogen and sulfur containing compounds.

Keywords


Renewable energy; biomass energy

Full Text:

PDF

References


R. P. John, G. S. Anisha, K. M. Nampoothiri, and A. Pandey, “Micro and macroalgal biomass: A renewable source for bioethanol”, Bioresour. Technol, vol. 102, pp. 186–193, 2011. DOI: https://10.1016/j.biortech.2010.06.139.

M. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels”, Fuel, vol. 89, pp. S2–S10, 2010. DOI: https://10.1016/j.fuel.2010.07.029.

M. E. Shayan, G. Najafi, and A. Nazari, “The biomass supply chain network auto-regressive moving average algorithm”, Int. J. Smart Grid, vol. 5, pp. 15–22, 2021. DOI: https://10.20508/ijsmartgrid.v5i1.153.g135.

A. Demirbas, “Use of algae as biofuel sources”, Energy Convers. Manage, vol. 51, pp. 2738–2749, 2010. DOI: https://10.1016/j.enconman.2010.06.010.

P. McKendry, “Energy production from biomass (part 1): overview of biomass”, Bioresour. Technol, vol. 83, pp. 37–46, 2002. DOI: https://10.1016/S0960-8524(01)00118-3.

K. E. Okedu, aand M. Al-Hashmi, "Assessment of the cost of various renewable energy systems to provide power for a small community: Case of Bukha, Oman", Int. J. Renew. Smart Grid, vol. 3, pp. 173–182, 2018. DOI: https://10.20508/ijsmartgrid.v2i3.17.g179.

E. W. Becker, “Micro-algae as a source of protein”, Biotechnol. Advances, vol. 25, pp. 207–210, 2007. DOI: https://10.1016/j.biotechadv.2006.11.002.

M. A. Toyub, M. I. Miah, M. A. B. Habib, and M. M. Rahman, “Growth performance and nutritional value of Scenedesmus obliquos cultured in different concentrations of sweetmeat factory waste media”, Bangladesh J. Anim. Sci, vol. 37, pp. 86–93, 2008. DOI: https://10.3329/bjas.v37i1.9874.

A. I. Mabuda, N. S. Mamphweli, and E. L. Meyer, “Model free kinetic analysis of biomass/sorbent blends for gasification purposes”, Renew. Sustain. Energy Rev, vol. 53, pp. 1656–1664, 2016. DOI: https://10.1016/j.rser.2015.07.038.

A. V. Bridgwater, P. Carson, and M. Coulson, “A comparison of fast and slow pyrolysis liquids from mallee”, Int. J. Glob. Energy Issues, vol. 27, pp. 204–216, 2007. DOI: https://10.1504/IJGEI.2007.013655.

A. Hornung, “Intermediate pyrolysis of biomass”, In: Rosendahl L, editors. Biomass Combustion Science, Technology and Engineering, Birmingham: Woodhead, 2013, pp. 172–186.

Nyoni B., and Hlangothi S., “Evaluation of the thermal decomposition behaviour of algal biomass in a rotary kiln pyrolyser”, 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco, pp. 1–4, 23–27 November 2021. DOI: https://10.1109/IRSEC53969.2021.9741174.

Y. Yang, J. G. Brammer, A. S. N. Mahmood, and A. Hornung, “Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels”, Bioresour. Technol, vol. 169, pp. 794–799, 2014. DOI: https://10.1016/j.biortech.2014.07.044.

R. R. Dirgarini, J. N. Subagyono, Y. Qi, W. R. Jackson, and A. L. Chaffee, “Pyrolysis-GC/MS analysis of biomass and the bio-oils produced from CO/H2O reactions”, J. Anal. Appl. Pyrolysis, vol. 120, pp. 154–164, 2016. DOI: https://10.1016/j.jaap.2016.05.001.

G. Bensidhom, M. Arabiourrutia, A. B. H. Trabelsi, M. Cortaza, S. Ceylan, and M. Orlaza, “Fast pyrolysis of date palm biomass using Py-GCMS”, J. Energy Institute, vol. 99, pp. 229–239, 2021. DOI: https://10.1016/j.joei.2021.09.012.

Z. Wang, Y. Che, J. Li, W. Wu, B. Yan, Y. Zhang, X. Wang, F. Yu, G. Chen, X. Zuo, and X. Li, “Effects of anaerobic digestion pretreatment on the pyrolysis of Sargassum: Investigation by TG-FTIR and Py-GC/MS”, Energy Convers. Manage, vol. 267, pp. 1–9, 2022. DOI: https://10.1016/j.enconman.2022.115934.

H. A. Lopez-Aguilar, D. Quiroz-Cardoza, and A. Perez-Hernandez, “Volatile compounds of algal biomass pyrolysis”, J. Mar. Sci. Eng, vol. 10, pp. 1–16, 2022. DOI: https://10.3390/jmse10070928.

F. A. Sotoudehniakarani, A. Alayat, and A. G. McDonald, “Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae”, J. Anal. Appl. Pyrolysis, vol. 139, pp. 258–273, 2019. DOI: https://10.1016/j.jaap.2019.02.014.

Z. Hu, Y. Zheng, F. Yan, B. Xiao, and S. Liu, “Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization”, Energy, vol. 52, pp. 119–125, 2013. DOI: https://10.1016/j.energy.2013.01.059.

ASTM D3172-07a, Standard Practice for Proximate Analysis of Coal and Coke, ASTM International, 2007.

ASTM E871, Standard Test Method for Moisture Analysis of Particulate Wood Fuels, ASTM International, 2013.

ASTM E872, Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, ASTM International, 2013.

J. P. Diebold, and S. Czernik, “Additives to lower and stabilize the viscosity of pyrolysis oils during storage”, Energy Fuels, vol. 11, pp. 1081–1091, 1997. DOI: https://10.1021/ef9700339.

M. Wang, S. L. Zhang, and P. G. Duan, “Slow pyrolysis of biomass: effects of effective hydrogen-to-carbon atomic ratio of biomass and reaction atmospheres”, Energy Sources Part A, vol. 42, pp. 1–14, 2019. DOI: https://10.1080/15567036.2019.1665150

T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, and G. W. Huber, “Renewable chemical comodity feedstocks from integrated catalytic processing of pyrolysis oils”, Sci, vol. 330, pp. 1222–1227, 2010. DOI: https://10.1126/science.1194218.

B. Nyoni, S. Duma, S. Shabangu, and S. Hlangothi, “Comparison of the slow pyrolysis behaviour and kinetics of coal, wood and algae at high heating rates”, Nat. Resour. Res, vol. 29, pp. 3943–3955, 2020. DOI: https://10.1007/s11053-020-09687-3.

K. Kirtania, and S. Bhattacharya, “Pyrolysis kinetics and reactivity of algae-coal blends”, Biomass Bioenergy, vol. 55, pp. 291–298, 2013. DOI: https://10.1007/s11053-020-09687-3.

B. Nyoni, S. Duma, L. Bolo, S. Shabangu, and S. P. Hlangothi, “Co-pyrolysis of South African bituminous coal and Scenedesmus microalgae: Kinetics and synergistic effects study”, Int. J. Coal Sci. Technol, vol. 7, pp. 807–815, 2020. DOI: https://10.1007/s40789-020-00310-7.

Q. V. Bach, and W. H. Chen, “Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): State-of-the-art review”, Bioresour. Technol, vol. 131, pp. 109–116, 2014. DOI: https://10.1016/j.biortech.2017.06.087.

J. Wang, W. Lian, P. Li, Z. Zhang, J. Yang, X. Hao, W. Huang, and G. Guan, "Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer", Fuel, vol. 207, pp. 126–135, 2017. DOI: https://10.1016/j.fuel.2017.06.078.

T. A. Khan, A. A. Mukhlif, E. A. Khan, and D. K. Sharma, "Isotherm and kinetics modelling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass", Model Earth Syst. Environ, vol. 117, pp. 1¬13, 2016. DOI: https://10.1007/s40808-016-0157-z.

N. Sebeia, M. Jabli, A. Ghith, Y. Elghoul, and F. M. Alminderej, "Production of cellulose from Aegagrobia Linnaei macro-algae: Chemical modification, characterization and application for the bio-sorption of cationic and anionic dyes from water", Int. J. Biol. Macromolecules, vol. 135, pp. 152–162, 2019. DOI: https://10.1016/j.ijbiomac.2019.05.128.

L. S. Ferreira, M. S. Rodrigues, J. C. M. de Carvalho, A. Lodi, E. Finocchio, P. Perego, and A. Converti, "Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Anthrospira (Spirulina) plantesis and Chlorella vulgaris. I. Single metal systems", Chem. Eng. J, vol. 173, pp. 326–333, 2011. DOI: https://10.1016/j.cej.2011.07.039.

N. A. Al-Dhabi, "Heavy metal analysis in commercial Spirulina products for human consumption", Saudi J. Biol. Sci, vol. 20, pp. 383–388, 2013. DOI: https://10.1016/j.sjbs.2013.04.006.

M. Mamera, J. J. van Tol, M. P. Aghoghovwia, and E. Kotze, "Sensitivity and calibration of the FT-IR spectroscopy on concentration of heavy metal ions in river and borehole water sources", Appl. Sci, vol. 10, pp. 1¬–16, 2020. DOI: https://10.3390/app10217785.

A. A. Yusuf, and F. L. Inambao, "Characterization of Ugandan biomass wastes as the potential candidates towards bioenergy production", Renew. Energy Sustain. Rev, vol. 117, pp. 1–10, 2020. DOI: https://10.1016/j.rser.2019.109477.

Arslan, R., and Ulusoy, Y., "Utilisation of waste cooking oil as an alternative fuel for Turkey", 2015 5th International Conference on Renewable Energy Research and Applications (ICRERA), UK, pp. 728–731, 20–23 November 2015. DOI: https://10.1109/ICRERA.2016.7884526.

S. Kraub, and W. Vetter, "Phytol and phytyl fatty acid esters: Occurrence, concentrations and relevance", European J. Lipid Sci. Technol, vol. 120, pp. 1–14, 2018. DOI: https://10.1002/ejlt.201700387.

N. I. Tracy, D. W. Crunkleton, and G. L. Price, "Gasoline production from phytol", Fuel, vol. 89, pp. 3493–3497, 2010. DOI: https://10.1016/j.fuel.2010.06.022.

A. Dirmibas, D. Gullu, A. Caglar, and F. Akdeniz, "Estimation of calorific values of fuel from lignocellulosics", Energy Sources, vol. 19, pp. 765–770, 1997. DOI: https://10.1080/00908319708908888.

A. Dirmibas, N. Ak, A. Aslan, and N. Sen, "Calculation of higher heating values of hydrocarbon compounds and fatty acids", Petroleum Sci. Technol, vol. 36, pp. 712–717, 2018. DOI: https://10.1080/10916466.2018.1443126.

Khalida B., Mohamed Z., Belaid S., Samir H. O., Sobhi K., and Midane S., “Prediction of higher heating value HHV of date palm biomass fuel using artificial intelligence method”, 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Romania, pp. 59–62, 03–06 November 2019. DOI: https:// 10.1109/ICRERA47325.2019.8997113.

N. Bordoloi, R. Narzari, D. Sut, R. Saikia, R. S. Chutia, and R. Kataki, "Characterisation of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus", Renew. Energy, vol. 98, pp. 245–253, 2016. DOI: https://10.1016/j.renene.2016.03.081.

Hosokai, S., Matsuoka, K., Kuramoto, K., and Suzuki, Y., "Estimation of thermodynamic properties of liquid fuel from biomass pyrolysis", 2014 3rd International Conference on Renewable Energy Research and Applications (ICRERA), USA, pp. 728–731, 09–22 October 2014. DOI: https://10.1109/ICRERA.2014.7016481.

Y. Zhou, and C. Hu, "Catalytic thermochemical conversion of algae and upgrading of algal oil for the production of high-grade liquid fuel: A review", Catalysts, vol. 10, pp 1–24, 2020. DOI: https://10.3390/catal10020145.

P. A. Costa, M. A. Barreiros, A. I. Mouquinho, P. O. Silva, F. Paradela, and F. A. C. Oliveira, "Slow pyrolysis of cork granules under nitrogen atmosphere: by-products characterization and their potential valorization", Biofuel Res. J, vol. 33, pp. 1562–1572, 2022. DOI: https://10.18331/BRJ2022.9.1.3.

N. K. Targhi, O. Tavakoli, and A.H. Nazemi, “Co-pyrolysis of lentil husk wastes and Chlorella vulgaris: Bio-oil and biochar yields optimization”, J. Anal. Appl. Pyrolysis, vol. 165, pp. 1–16, 2022. DOI: https://10.1016/j.jaap.2022.105548.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13229.g8521

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4