The Integration of Intermittent Renewable Energy Sources to Smart Grid: A Comprehensive View

Abdulrahman Ibrahim AlKassem

Abstract


Renewable energy resources are intermittent by nature. This intermittency influences the balance of the electrical system negatively and the influence grows with the increase of renewable energy penetration into the grid. The transion of the classic electricity power grid to a smart grid is one of the key promising solutions. It helps in many aspects including the integration of renewable energy resources and to cope with the increased demand over an aging infrastructure. This research provides a comprehensive view of the integration of renewable energy technologies into the smart grid. An overview of the key features to facilitate the integration of intermittent energy sources into the smart grid is discussed. The smart grid concept, its impact, and its challenges are presented and discussed. Furthermore, the proposed resolutions presented in the literature are investigated. This research sheds the light on the important areas in generation, transmission, and distribution phases to help in the decision making related to managing the impact of higher penetration of renewable energy sources to the grid including smart transmission, smart distribution methodologies, electric vehicles, and shifting the role of the demand-side from being passive and uncontrollable to active and controllable. The proposed enhancements can provide the needed reinforcement for the grid system to overcome its current challenges.


Keywords


Smart grid; renewable energy; distributed energy resources; intermittent resources; demand response; demand dispatch; microgrid.

Full Text:

PDF

References


Zhang S, Minxiang H. Microgrid: A Strategy to Develop Distributed Renewable Energy Resource. Int. Conf. Electr. Control Eng., 2011, p. 3520–3.

Brinda P, Usha Rani P. A Comprehensive View on Information Metering, Monitoring and Measurement of a Smartgrid. IOP Conf Ser Mater Sci Eng 2021;1070:012092. doi:10.1088/1757-899x/1070/1/012092.

Hart EK, Stoutenburg ED, Jacobson MZ. The Potential of Intermittent Renewables to Meet Electric Power Demand: Current Methods and Emerging Analytical Techniques. Proc IEEE 2012;100:322–34. doi:10.1109/JPROC.2011.2144951.

Das A, Balakrishnan V. Energy Service Companies (ESCOs) to Optimize Power in Peak Demand Period in Hybrid Energy System: An Impact on Climate Change. IEEE Green Technol. Conf., IEEE; 2010, p. 1–10.

Vergara PP, Subramanian A, Van Der Veen A, Kok K. A Co-simulation Framework for the Provision of Support Services by Smart Residential Users in LV Distribution Systems. 2021 IEEE Madrid PowerTech, PowerTech 2021 - Conf Proc 2021. doi:10.1109/PowerTech46648.2021.9495062.

Lasseter RH. Smart Distribution: Coupled Microgrids. Proc IEEE 2011;99:1074–82. doi:10.1109/JPROC.2011.2114630.

Ipakchi A, Albuyeh F. Grid of the future. IEEE Power Energy Mag 2009;7:52–62. doi:10.1109/MPE.2008.931384.

Brooks BA, Lu E, Reicher D, Spirakis C. Demand Dispatch. IEEE Power Energy Mag 2010;8:20–9. doi:10.1109/MPE.2010.936349.

Kok K, Roossien B, MacDougall P, van Pruissen O, Venekamp G, Kamphuis R, et al. Dynamic pricing by scalable energy management systems — Field experiences and simulation results using PowerMatcher. 2012 IEEE Power Energy Soc. Gen. Meet., 2012, p. 1–8. doi:10.1109/PESGM.2012.6345058.

Pazheri FR, Malik NH, Al-Arainy AA, Al-Ammar EA, Imthias A, O K S. Smart Grid Can Make Saudi Arabia Megawatt Exporter. Power Energy Eng. Conf. (APPEEC), Asia-Pacific, IEEE; 2011, p. 1–4. doi:10.1109/APPEEC.2011.5748905.

Koh LH, Tan YK, Wang P, Tseng KJ. Renewable energy integration into smart grids: Problems and solutions — Singapore experience. IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–7. doi:10.1109/PESGM.2012.6345679.

Wu L, Luo T, Wu H, Zhan Y, Wang L, Zhao W, et al. Research on Security and Protection of Grid System Information Communication Network. IOP Conf Ser Mater Sci Eng 2019;631. doi:10.1088/1757-899X/631/4/042035.

Majeed Butt O, Zulqarnain M, Majeed Butt T. Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Eng J 2021;12:687–95. doi:10.1016/j.asej.2020.05.004.

Li F, Qiao W, Sun H, Wan H, Wang J, Xia Y, et al. Smart Transmission Grid: Vision and Framework. IEEE Trans Smart Grid 2010;1:168–77. doi:10.1109/TSG.2010.2053726.

Glinkowski M, Hou J, Rackliffe G. Advances in Wind Energy Technologies in the Context of Smart Grid. Proc IEEE 2011;99:1083–97. doi:10.1109/JPROC.2011.2112630.

Mahin AU, Islam SN, Ahmed F, Hossain MF. Measurement and monitoring of overhead transmission line sag in smart grid: A review. IET Gener Transm Distrib 2022;16:1–18. doi:10.1049/gtd2.12271.

Tur MR, Ogras H. Transmission of Frequency Balance Instructions and Secure Data Sharing Based on Chaos Encryption in Smart Grid-Based Energy Systems Applications. IEEE Access 2021;9:27323–32. doi:10.1109/ACCESS.2021.3058106.

Roncero JR. Integration is key to Smart Grid management. SmartGrids Distrib., CIRED Seminar 2008: SmartGrids for Distribution Frankfurt: 2008, p. 1–4.

Justo JJ, Mwasilu F, Lee J, Jung J-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew Sustain Energy Rev 2013;24:387–405. doi:10.1016/j.rser.2013.03.067.

Mukhopadhyay S, Soonee SK, Joshi R, Rajput AK. On the Progress of Renewable Energy Integration into Smart Grids in India. IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–6. doi:10.1109/PESGM.2012.6344933.

Du W, Schneider KP, Tuffner FK, Chen Z, Lasseter RH. Modeling of Grid-Forming Inverters for Transient Stability Simulations of an all Inverter-based Distribution System. 2019 IEEE Power Energy Soc Innov Smart Grid Technol Conf ISGT 2019 2019:1–5. doi:10.1109/ISGT.2019.8791620.

Lin Y, Johnson BB, Dhople S, Bullo F, Chapman P, Purba V, et al. Stabilizing the Power System in 2035 and Beyond: Evolving from Grid-Following to Grid-Forming Distributed Inverter Controllers (Final Technical Report) 2021.

Raghav LP, Rangu SK, Dhenuvakonda KR, Singh AR. Optimal energy management of microgrids-integrated nonconvex distributed generating units with load dynamics. Int J Energy Res 2021;45:18919–34. doi:10.1002/er.6995.

Nimalsiri NI, Ratnam EL, Smith DB, Mediwaththe CP, Halgamuge SK. Coordinated Charge and Discharge Scheduling of Electric Vehicles for Load Curve Shaping. IEEE Trans Intell Transp Syst 2021:1–13. doi:10.1109/TITS.2021.3071686.

Kok K, Karnouskos S, Nestle D, Dimeas A, Weidlich A, Warmer C, et al. Smart Houses For A Smart Grid. Int. Conf. Exhib. Electr. Distrib., 2009, p. 1–4.

Pudjianto D, Aunedi M, Djapic P, Strbac G. Whole-Systems Assessment of the Value of Energy Storage in Low-Carbon Electricity Systems. IEEE Trans Smart Grid 2014;5:1098–109. doi:10.1109/TSG.2013.2282039.

Seal B, Uluski R. Integrating Smart Distributed Energy Resources with Distribution Management Systems. Electr Power Res Instiute 2012. http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001024360.

Lasseter RH. MicroGrids. IEEE Power Eng. Soc. Winter Meet., vol. 1, IEEE; 2002, p. 305–8. doi:10.1109/PESW.2002.985003.

Alkassem A, Draou A, Alamri A, Alharbi H. Design Analysis of an Optimal Microgrid System for the Integration of Renewable Energy Sources at a University Campus 2022.

Ding Z, Guo Y, Wu D, Fang Y. A Market Based Scheme to Integrate Distributed Wind Energy. IEEE Trans Smart Grid 2013;4:976–84. doi:10.1109/TSG.2012.2230278.

Ding Y, Nyeng P, Ostergaard J, Trong MD, Pineda S, Kok K, et al. Ecogrid EU - a large scale smart grids demonstration of real time market-based integration of numerous small DER and DR. 3rd IEEE PES Innov. Smart Grid Technol. Eur. (ISGT Eur., IEEE; 2012, p. 1–7. doi:10.1109/ISGTEurope.2012.6465895.

Enslin J. Grid Impacts and Solutions of Renewables at High Penetration Levels 2009:1–7.

Zhou D, Hu F, Zhu Q, Wang Q. Regional allocation of renewable energy quota in China under the policy of renewable portfolio standards. Resour Conserv Recycl 2022;176:105904. doi:10.1016/J.RESCONREC.2021.105904.

Xin-gang Z, Yi Z, Hui W, Zhen W. How can the cost and effectiveness of renewable portfolio standards be coordinated? Incentive mechanism design from the coevolution perspective. Renew Sustain Energy Rev 2022;158:112096. doi:10.1016/J.RSER.2022.112096.

Renewable and Alternative Energy Portfolio Standards. Cent Clim Energy Solut USA 2013:1–9. http://www.c2es.org/sites/default/modules/usmap/pdf.php?file=5907 (accessed February 8, 2014).

Wang Y, Xu L, Solangi YA. Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustain Cities Soc 2020;52. doi:10.1016/j.scs.2019.101861.

Karatop B, Ta?kan B, Adar E, Kubat C. Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach. Comput Ind Eng 2020. doi:10.1016/j.cie.2020.106958.

Mukhamediev RI, Mustakayev R, Yakunin K, Kiseleva S, Gopejenko V. Multi-criteria spatial decision making supportsystem for renewable energy development in Kazakhstan. IEEE Access 2019;7:122275–88. doi:10.1109/ACCESS.2019.2937627.

Cheng L, Yin L, Wang J, Shen T, Chen Y, Liu G, et al. Behavioral decision-making in power demand-side response management: A multi-population evolutionary game dynamics perspective. Int J Electr Power Energy Syst 2021;129:106743. doi:10.1016/J.IJEPES.2020.106743.

Jing Y, Wang H, Hu Y, Li C. A Grid-Connected Microgrid Model and Optimal Scheduling Strategy Based on Hybrid Energy Storage System and Demand-Side Response. Energies 2022;15:1060. doi:10.3390/en15031060.

Zhu Z, Lambotharan S, Chin WH, Fan Z. Overview of Demand Management in Smart Grid and Enabling Wireless CommunicationTtechnologies. IEEE Wirel Commun 2012;19:48–56. doi:10.1109/MWC.2012.6231159.

Ma O, Alkadi N, Cappers P, Denholm P, Dudley J, Goli S, et al. Demand Response for Ancillary Services. IEEE Trans Smart Grid 2013;4:1988–95. doi:10.1109/TSG.2013.2258049.

Kennel F, Gorges D, Liu S. Energy Management for Smart Grids With Electric Vehicles Based on Hierarchical MPC. IEEE Trans Ind Informatics 2013;9:1528–37. doi:10.1109/TII.2012.2228876.

DUKOVSKA I, BERNARDS R, MORREN J, SLOOTWEG H (J. G. Integrating AN Agent-Aggregator Model for Demand Side Management in Distribution Network Planning. CIRED Work., Ljubljana, Slovenia: 2018.

Verba N, Nixon JD, Gaura E, Dias LA, Halford A. A community energy management system for smart microgrids. Electr Power Syst Res 2022;209:107959. doi:10.1016/J.EPSR.2022.107959.

Tabar VS, Ghassemzadeh S, Tohidi S. Energy management in hybrid microgrid with considering multiple power market and real time demand response. Energy 2019;174:10–23. doi:10.1016/J.ENERGY.2019.01.136.

Bechstein M. EcoGrid EU A Prototype for European Smart Grid. Local Renew Conf 2012. http://www.local-renewables-conference.org/fileadmin/lr-conference/files/LR2012/02-Documents/Bechstein.pdf.

Bakker V, Bosman MGC, Molderink A, Hurink JL, Smit GJM. Demand Side Load Management Using a Three Step Optimization Methodology. First IEEE Int. Conf. Smart Grid Commun., IEEE; 2010, p. 431–6. doi:10.1109/SMARTGRID.2010.5622082.

MacDougall P, Kok K, Warmer C, Roossien B. Flexibility dynamics in clusters of residential demand response and distributed generation. 22nd Int. Conf. Exhib. Electr. Distrib. (CIRED 2013), Institution of Engineering and Technology; 2013, p. 1–4. doi:10.1049/cp.2013.1134.

Brouwers H, Mierlo B van. Residential smart grid projects in the Netherlands: an overview of energy systems and stakeholder’s and user’s involvement. 2019.

Fonteijn R, Amstel M, Nguyen P, Morren J, Maarten Bonnema G, Slootweg H. Evaluating flexibility values for congestion management in distribution networks within Dutch pilots. J Eng 2019;2019:5158–62. doi:10.1049/joe.2018.9314.

Power Matcher. Netherl Orgnization Appl Sci Res TNO 2011. https://repository.tno.nl/islandora/object/uuid:6b6f5502-1d2a-4d5b-ad57-515f30e55c34 (accessed January 20, 2022).

PowerMatcher smart grid technology part of Sustainia100. Netherl Orgnization Appl Sci Res TNO n.d. https://issuu.com/sustainia/docs/2013_sustainia100 (accessed March 15, 2022).

Yu F, Zhang P, Xiao W, Choudhury P. Communication Systems for Grid Integration of Renewable Energy Resources. IEEE Netw 2011;25:22–9. doi:10.1109/MNET.2011.6033032.

Kumar M, Singh SN, Srivastava SC. Design and control of smart DC microgrid for integration of renewable energy sources. IEEE Power Energy Soc. Gen. Meet., IEEE; 2012, p. 1–7. doi:10.1109/PESGM.2012.6345018.

Dehaghani ES, Williamson SS. On the inefficiency of vehicle-to-grid (V2G) power flow: Potential barriers and possible research directions. 2012 IEEE Transp. Electrif. Conf. Expo, IEEE; 2012, p. 1–5. doi:10.1109/ITEC.2012.6243446.

Monteiro V, Gonçalves H, Ferreira JC, Afonso JL. Batteries Charging Systems for Electric and Plug-In Hybrid Electric Vehicles. In: Carmo J, editor. New Adv. Veh. Technol. Automot. Eng. 1st ed., InTech; 2012, p. 149–68.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i3.13110.g8556

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4