Optimization of the Thermal Performance of the Solar Water Heater (SWH) Using Stochastic Technique
Abstract
Keywords
Full Text:
PDFReferences
Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 2006;91:992–1007. doi:10.1016/j.ress.2005.11.018.
Kalogirou SA. Optimization of solar systems using artificial neural-networks and genetic algorithms. Applied Energy 2004;77:383–405. doi:10.1016/s0306-2619(03)00153-3.
Loomans M, Visser H. Application of the genetic algorithm for optimisation of large solar hot water systems. Solar Energy 2002;72:427–39. doi:10.1016/s0038-092x(02)00020-8.
Varun. Thermal performance optimization of a flat plate solar air heater using genetic algorithm. Applied Energy 2010;87:1793–9. doi:10.1016/j.apenergy.2009.10.015.
Varun, Sharma N, Bhat IK, Grover D. Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique. Solar Energy 2011;85:2331–7. doi:10.1016/j.solener.2011.06.022.
Kulkarni GN, Kedare SB, Bandyopadhyay S. Determination of design space and optimization of solar water heating systems. Solar Energy 2007;81:958–68. doi:10.1016/j.solener.2006.12.003.
Gholap AK, Khan JA. Design and multi-objective optimization of heat exchangers for refrigerators. Applied Energy 2007;84:1226–39. doi:10.1016/j.apenergy.2007.02.014.
Doodman AR, Fesanghary M, Hosseini R. A robust stochastic approach for design optimization of air-cooled heat exchangers. Applied Energy 2009;86:1240–5. doi:10.1016/j.apenergy.2008.08.021.
Klein SA. Calculation of flat-plate collector loss coefficients. Solar Energy 1975;17:79–80. doi:10.1016/0038-092x(75)90020-1.
Kalogirou SA. Solar thermal collectors and applications. Progress in Energy and Combustion Science 2004;30:231–95. doi:10.1016/j.pecs.2004.02.001.
UNESCO documents and publications 1985. http://unesdoc.unesco.org/ulis/cgi-bin/ulis.pl?database=ged&req=2&look=all&no=123413 (accessed December 19, 2016).
Genetic algorithms in search, optimization, and machine learning. Choice Reviews Online 1989;27:27–0936 – 27–0936. doi:10.5860/choice.27-0936.
Kunakote T, Bureerat S. Multi-objective topology optimization using evolutionary algorithms. Engineering Optimization 2011;43:541–57. doi:10.1080/0305215x.2010.502935.
Sharma N, Varun. Stochastic techniques used for optimization in solar systems: A review. Renewable and Sustainable Energy Reviews 2012;16:1399–411. doi:10.1016/j.rser.2011.11.019.
Genetic algorithms in search, optimization, and machine learning. Choice Reviews Online 1989;27:27–0936 – 27–0936. doi:10.5860/choice.27-0936.
Dagdougui H, Ouammi A, Robba M, Sacile R. Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tétouan (Morocco). Renewable and Sustainable Energy Reviews 2011;15:630–8. doi:10.1016/j.rser.2010.09.010
Ouhammou. B, Aggour. M; A. Frimane Feasibility study of integrating solar energy into anaerobic digester reactor for improved performances using TRNSYS simulation: Application kenitra Morocco. Energy Procedia-2017. 402-407. doi.org/10.1016/j.egypro.2017.10.255.
M.S. Hossain Lipu; Feature Selection and Optimal Neural Network Algorithm for the State of Charge Estimation of Lithium-ion Battery for Electric Vehicle Application; IJRER vol.7-(4); 2017.
Yousef Allahvirdizadeh , Mustafa Mohamadian et al,;Optimization of a Fuzzy Based Energy Management Strategy for a PV/WT/FC Hybrid Renewable System; IJRER vol.7-(4);2017
Abdullahi Abubakar Mas’ud; An Optimal Sizing Algorithm for a Hybrid Renewable Energy System; vol.7-(4); 2017.
H. Loutfi, A. Bernatchou et al; Generation of Horizontal Hourly Global Solar Radiation From Exogenous Variables Using an Artificial Neural Network in Fes (Morocco); IJRER vol.7-(3), 2017.
Hichem Othmani, Fares Sassi; Fuzzy Optimization of a Photovoltaic Pumping System: Implementation and Measurements; IJRER vol.7-(3), 2017.
DOI (PDF): https://doi.org/10.20508/ijrer.v8i3.7666.g7439
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4