A new approach to estimate solar radiation
Abstract
Keywords
Full Text:
PDFReferences
G. Oturanç, A. Hepbasli, and A. Genç, “Statistical analysis of solar radiation data,” Energy Sources, vol. 25, no. 11, pp. 1089–1097, Nov. 2003, doi: 10.1080/00908310390233531.
A. Genç, I. Kinaci, G. Oturanç, A. Kurnaz, ?. Bilir, and N. Özbalta, “Statistical analysis of solar radiation data using cubic spline functions,” Energy Sources, vol. 24, no. 12, pp. 1131–1138, Dec. 2002, doi: 10.1080/00908310290087058.
K. Gopinathan, “Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range,” Energy, vol. 20, no. 7, pp. 657–667, Jul. 1995, doi: 10.1016/0360-5442(95)00004-Z.
E. Tasdemiroglu and R. Sever, “Maps for average bright sunshine hours in Turkey,” Energy Convers Manag, vol. 31, no. 6, pp. 545–552, Jan. 1991, doi: 10.1016/0196-8904(91)90089-2.
I. Türk Togrul and E. Onat, “A study for estimating solar radiation in Elazig using geographical and meteorological data,” Energy Convers Manag, vol. 40, no. 14, pp. 1577–1584, Sep. 1999, doi: 10.1016/S0196-8904(99)00035-7.
K. Kaygusuz, “The comparison of measured and calculated solar radiations in Trabzon, Turkey,” Energy Sources, vol. 21, no. 4, pp. 347–353, Mar. 1999, doi: 10.1080/00908319950014830.
L. Mazorra Aguiar and F. Díaz, “Daily global solar radiation modeling for Gran Canaria Island,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 38, no. 24, pp. 3557–3564, Dec. 2016, doi: 10.1080/15567036.2016.1193569.
A. Aktas and E. Yilmaz, “A suitable model to estimate global solar radiation in Black Sea Shoreline Countries,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 17, pp. 1628–1636, Jun. 2012, doi: 10.1080/15567036.2011.649339.
K. Bakirci, “Models for the estimation of diffuse solar radiation for typical cities in Turkey,” Energy, vol. 82, pp. 827–838, Mar. 2015, doi: 10.1016/j.energy.2015.01.093.
K. Kaba, M. Sarigül, M. Avci, and H. M. Kandirmaz, “Estimation of daily global solar radiation using deep learning model,” Energy, vol. 162, pp. 126–135, Nov. 2018, doi: 10.1016/j.energy.2018.07.202.
F. Baser and H. Demirhan, “A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation,” Energy, vol. 123, pp. 229–240, Mar. 2017, doi: 10.1016/j.energy.2017.02.008.
M. C. Sorkun, Durmaz Incel Özlem, and C. Paoli, “Time series forecasting on multivariate solar radiation data using deep learning (LSTM),” Turkish Journal Of Electrical Engineering & Computer Sciences, vol. 28, no. 1, pp. 211–223, Jan. 2020, doi: 10.3906/elk-1907-218.
A. O. Boyo and K. A. Adeyemi, “Analysis of solar radiation data from satellite and Nigeria meteorological station,” International Journal of Renewable Energy Research, vol. 1, no. 4, pp. 314–322, 2011, doi: 10.20508/ijrer.v1i4.93.g72.
N. Kumar, U. K. Sinha, S. P. Sharma, and Y. K. Nayak, “Prediction of daily global solar radiation using neural networks with improved gain factors and RBF networks,” International Journal of Renewable Energy Research, vol. 7, no. 3, pp. 1235–1244, 2017, doi: 10.20508/ijrer.v7i3.5988.g7156.
A. David, E. Joseph, N. R. Ngwa, and N. A. Arreyndip, “Global solar radiation of some regions of Cameroon using the linear Angstrom model and non-linear polynomial relations: Part 2, sun-path diagrams, energy potential predictions and statistical validation,” International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 649–660, 2018, doi: 10.20508/ijrer.v8i1.6558.g7339.
Enerji Isleri Genel Müdürlügü, “GEPA,” https://gepa.enerji.gov.tr/MyCalculator/.
Ministry of Energy and Natural Resources, “Günes,” https://enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklar-gunes.
A. Angstrom, “Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation,” Quarterly Journal of the Royal Meteorological Society, vol. 50, no. 210, pp. 121–126, Apr. 1924, doi: 10.1002/qj.49705021008.
J. K. Page, “The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surface from sunshine records for latitudes 40N-40S,” in Proceedings of UN Conference on New Sources of Energy , 1961, pp. 378–390.
J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. New York: Wiley, 1991.
K. Ulgen and A. Hepbasli, “Estimation of solar radiation parameters for Izmir, Turkey,” Int J Energy Res, vol. 26, no. 9, pp. 807–823, Jul. 2002, doi: 10.1002/er.821.
K. Ulgen and A. Hepbasli, “Comparison of solar radiation correlations for Izmir, Turkey,” Int J Energy Res, vol. 26, no. 5, pp. 413–430, Apr. 2002, doi: 10.1002/er.794.
K. Bakirci, “Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey,” Energy, vol. 34, no. 4, pp. 485–501, Apr. 2009, doi: 10.1016/j.energy.2009.02.005.
W. Schuepp, “Direct and scattered radiation reaching the Earth as influnced by geographic and astronomical factors,” in Solar Radiation, N. Robinson, Ed., Amsterdam: Elsevier, 1966, pp. 111–160.
H. Masson, “Quantitative estimation of solar radiation,” Solar Energy, vol. 10, no. 3, pp. 119–124, Jul. 1966, doi: 10.1016/0038-092X(66)90026-0.
A. Kiliç and A. Öztürk, Günes Enerjisi. Istanbul: Kipas Dagitimcilik, 1983.
D. Birkes and Y. Dodge, Alternative Methods of Regression. Wiley, 1993. doi: 10.1002/9781118150238.
A. Pekgör, “Parametrik Olmayan Regresyon,” in Dogrusal Regresyonda Alternatif Uygulamalar, 1st ed., A. Genç and A. Karakoca, Eds., Ankara: Gece Kitapligi, 2021, pp. 15–31.
G. Micula and S. Micula, Handbook of Splines. Dordrecht: Springer Netherlands, 1999. doi: 10.1007/978-94-011-5338-6.
G. A. F. Seber and C. J. Wild, Nonlinear regression. Hoboken, New Jersey: John Wiley & Sons, 2003.
D. J. Poirier, “Piecewise regression using cubic splines,” J Am Stat Assoc, vol. 68, no. 343, pp. 515–524, Sep. 1973, doi: 10.1080/01621459.1973.10481376.
Y. Xia, M. Winterhalter, and P. Fabian, “Interpolation of daily global solar radiation with thin plate smoothing splines,” Theor Appl Climatol, vol. 66, no. 1–2, pp. 109–115, Jun. 2000, doi: 10.1007/s007040070036.
Z. Sen, “Angström equation parameter estimation by unrestricted method,” Solar Energy, vol. 71, no. 2, pp. 95–107, 2001, doi: 10.1016/S0038-092X(01)00008-1.
E. S. Türker and E. Can, Computer applied numerical analysis methods. Adapazari: Degisim Yayinlari, 1997.
C.-H. Sung, “Estimation of a modified linear spline regression: Theory and application (Baltimore, Maryland) ,” Doctoral Dissertation, Wayne State University, Detroit-Michigan, 1985.
B. Ünal, “Çok degiskenli uyarlamali regresyon uzanimlari,” Master’s Thesis, Hacettepe University, Ankara, 2009.
R. Freund, R. Littell, and L. Creighton, Regression using JMP. USA: Institute and Wiley, 2003.
“Maple .” Maplesoft, a division of Waterloo Maple Inc, Waterloo, Ontario.
R Core Team, “R: A language and environment for statistical computing.” R Core Team, Vienna, Austria, 2019.
Ö. Alkan, “Türkiye’de ihracatin ithalati karsilama oranlarinin spline regresyon modelleri yardimiyla arastirilmasi,” Doctoral Dissertation, Ataturk University, Erzurum, 2013.
L. C. Marsh, “Estimating the number and location of knots in spline regressions,” Journal of Applied Business Research (JABR), vol. 2, no. 3, p. 60, Nov. 2011, doi: 10.19030/jabr.v2i3.6571.
B. Aksoy, “Estimated monthly average global radiation for Turkey and its comparison with observations,” Renew Energy, vol. 10, no. 4, pp. 625–633, Apr. 1997, doi: 10.1016/S0960-1481(96)00035-3.
M. Gunes, “Analysis of daily total horizontal solar radiation measurements in Turkey,” Energy Sources, vol. 23, no. 6, pp. 563–570, Jul. 2001, doi: 10.1080/00908310152125201.
R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,” Int J Forecast, vol. 22, no. 4, pp. 679–688, Oct. 2006, doi: 10.1016/j.ijforecast.2006.03.001.
TSMS, “Solar radiation data.” 2019. [Online]. Available: https://www.mgm.gov.tr/
DOI (PDF): https://doi.org/10.20508/ijrer.v14i3.14913.g8909
Refbacks
- There are currently no refbacks.
Online ISSN: 1309-0127
Publisher: Gazi University
IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);
IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.
WEB of SCIENCE in 2025;
h=35,
Average citation per item=6.59
Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43
Category Quartile:Q4