Sensitivity Analysis of Selected Project Parameter on the Feasibility of Converting Maize Cob to Bioethanol as a Means of Promoting Biorefinery Establishment in Nigeria

Toyese Oyegoke, Oluwarotimi Ayokunnu Owolabi, Olateju Alao Bamigbala, Geofferry Timothy Tongshuwar

Abstract


Biofuels have been a center of attraction in renewable energy science, owing to the depleting nature of fossil fuel. Solid waste products like maize cob have been used to produce bioethanol. This helps in recycling waste. However, the production process has not been cost-effective when done in a large scale. Optimisation studies on the production of biofuel and the economic feasibility of setting up a biorefinery in Nigeria have been carried out by different researchers on different feedstock. This study aims at reviewing the impact of government policies on subsidy, tax and cost of raw material will have on the establishment of biorefineries in Nigeria. Efficient models for determining ROI (return on investment) and NP (net profit) were deduced. It was understood from this study that subsidy had more effect on ROI and NP than the cost of raw materials alone.


Keywords


Biofuel; Biomass; Economics Feasibility; Optimization; Waste; RSM

Full Text:

PDF

References


M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, and S. Patil, “Bioethanol production: Feedstock and current technologies,” Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 573–584, 2014, doi: 10.1016/j.jece.2013.10.013.

A. Hassan, S. Z. Ilyas, and H. Mufti, “Review of the renewable energy status and prospects in Pakistan,” International Journal of Smart Grid - ijSmartGrid, vol. 5, no. 4, pp. 167–173, Dec. 2021, Accessed: Jan. 13, 2022. [Online]. Available: http://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/220

P. Shiyasharan and S. Nitin, “Experimental Investigation of Performance and Emission of Diesel Engine Fuelled With Preheated Jatropha Biodiesel and Its Blends With Ethanol | Patel | International Journal of Renewable Energy Research (IJRER),” International Journal of Renewable Energy Research, vol. 6, no. 4, pp. 1483–1490, 2016, doi: 10.20508/ijrer.v6i4.4744.g6937.

M. C. Macawile and J. Auresenia, “Utilization of Supercritical Carbon Dioxide and Co-solvent n-hexane to Optimize Oil Extraction from Gliricidia sepium Seeds for Biodiesel Production,” Applied Science and Engineering Progress, vol. 15, no. 1, pp. 1–10, Sep. 2022, doi: 10.14416/J.ASEP.2021.09.003.

K. Arunkumar, M. Muthukannan, A. S. Kumar, A. C. Ganesh, and R. K. Devi, “Cleaner Environment Approach by the Utilization of Low Calcium Wood Ash in Geopolymer Concrete,” Applied Science and Engineering Progress, vol. 15, no. 1, pp. 1–13, Jun. 2022, doi: 10.14416/J.ASEP.2021.06.005.

O. Toyese, O. Ademola, and J. J. Olusanya, “Preliminary Investigation on the Screening of Selected Metallic Oxides, M2O3 (M = Fe, La, and Gd) for the Capture of Carbon Monoxide Using a Computational Approach,” The Journal of Engineering, Science and Computing (JESC), vol. 3, no. 1, pp. 1–14, Apr. 2021, Accessed: Aug. 19, 2021. [Online]. Available: https://jesc.iu.edu.sa/Main/Article/63

T. Kusolsongtawee, T. Wuttilerts, S. Chulalaksananukul, and L. Maneechot, “Bioethanol Production from Ceratophyllum demersum L. and Carbon Footprint Evaluation,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 2, pp. 103–108, Apr. 2018, doi: 10.14416/J.IJAST.2018.04.002.

G. T. Tongshuwar and T. Oyegoke, “A Brief Survey of Biomass Hydrolysis As A Vital Process in Bio-refinery,” FUDMA Journal of Sciences, vol. 5, no. 3, pp. 407–412, Nov. 2021, doi: 10.33003/FJS-2021-0503-724.

S. A. Sameer, “Green Energy -An Introduction,” in Energy Science and Technology Opportunities and Challenges, 1st ed., Dr. S. Dr. U. C. S. Dr. Ram Prasad, Ed. LLC, USA: Stadium Press, 2015. Accessed: Nov. 09, 2021. [Online]. Available: https://www.researchgate.net/publication/313860560_Green_Energy_-An_Introduction

Y. S. Cheng et al., “Recent situation and progress in biorefining process of lignocellulosic biomass: Toward green economy,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 299–311, Aug. 2020, doi: 10.14416/J.ASEP.2020.08.002.

W. Rodiahwati and M. Sriariyanun, “Lignocellulosic Biomass to Biofuel Production: Integration of Chemical and Extrusion (Screw Press) Pretreatment,” King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology, vol. 9, no. 4, pp. 289–298, Nov. 2016, doi: 10.14416/J.IJAST.2016.11.001.

T. Oyegoke and B. Y. Jibril, “Design and feasibility Study of a 5MW bio-power plant in Nigeria,” International Journal of Renewable Energy Research, vol. 6, no. 4, pp. 1496–1505, 2016.

A. Alkholidi, H. Hamam, R. Andon, and Z. Cajupi, “Solar Energy Potentials in Southeastern European Countries: A Case Study,” International Journal of Smart Grid - ijSmartGrid, vol. 3, no. 2, pp. 108–119, Jun. 2019, Accessed: Jan. 27, 2022. [Online]. Available: http://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/51

E. Rodrigo and A. Larico, “Wind Energy Potential by the Weibull Distribution at High-Altitude Peruvian Highlands,” International Journal of Smart Grid - ijSmartGrid, vol. 5, no. 3, pp. 113–120, Sep. 2021, Accessed: Jan. 27, 2022. [Online]. Available: http://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/199

S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan, “Review of biodiesel composition, properties, and specifications,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 143–169, Jan. 2012, doi: 10.1016/J.RSER.2011.07.143.

E. Funmilayo Aransiola, M. O. Daramola, T. V. Ojumu, O. Aremu, S. Kolawole Layokun, and B. O. Solomon, “Nigerian Jatropha Curcas Oil Seeds: Prospect for Biodiesel Production in Nigeria,” INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH Elizabeth Funmilayo Aransiola et al, vol. 2, no. 2, pp. 318–325, 2012.

N. M. Aminu and Y. Aladire, “Overview of Biodiesel Production from Algae in Nigeria and Some Developing Countries,” International Journal of Scientific & Engineering Research, vol. 4, no. 1, pp. 1–9, 2013, Accessed: Sep. 25, 2021. [Online]. Available: http://www.ijser.org

S. Mohite, S. Maji, and A. Pal, “Performance Characteristics of Karanja Biodiesel Blends Using Energy Audit Technique,” Lecture Notes in Mechanical Engineering, pp. 167–177, 2021, doi: 10.1007/978-981-15-9678-0_14.

A. Elgharbawy and A. A. Sayed, “Cost Analysis for Biodiesel Production from Waste Cooking Oil Plant in Egypt,” International Journal of Smart Grid - ijSmartGrid, vol. 1, no. 1, pp. 16–25, 2017, Accessed: Jan. 13, 2022. [Online]. Available: http://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/2

O. G. Igbum, A. C. Eloka-Eboka, and S. Adoga, “Feasibility study of biogas energy generation from refuse dump in a community-based distribution in Nigeria,” International Journal of Low-Carbon Technologies, vol. 14, no. 2, pp. 227–233, Jun. 2019, doi: 10.1093/IJLCT/CTZ011.

S. O. Dahunsi and U. S. Oranusi, “Co-digestion of Food Waste and Human Excreta for Biogas Production,” Research Article British Biotechnology Journal, vol. 3, no. 4, pp. 485–499, 2013, Accessed: Sep. 25, 2021. [Online]. Available: www.sciencedomain.org

G. Pilarski, M. Kyncl, S. Stegenta, and G. Piechota, “Emission of Biogas from Sewage Sludge in Psychrophilic Conditions,” Waste and Biomass Valorization , vol. 11, no. 7, pp. 3579–3592, May 2019, doi: 10.1007/S12649-019-00707-9.

N. S. Huirem and L. Apurba, “An Exposition on the Results of Utilizing Biogas as an Alternative Fuel on the Attributes of Internal Combustion Engines,” International Journal of Renewable Energy Research, vol. 9, no. 3, pp. 1250–1259, Apr. 2019, doi: 10.20508/ijrer.v9i3.9472.g7701.

P. S. Nigam and A. Singh, “Production of liquid biofuels from renewable resources,” Progress in Energy and Combustion Science, vol. 37, no. 1, pp. 52–68, Feb. 2011, doi: 10.1016/J.PECS.2010.01.003.

S. B. Oyeleke, B. E. N. Dauda, Oyewole, I. N. Okoliegbe, and T. Ojebode, “Production of Bioethanol From Cassava and Sweet Potato Peels 1 Production of Bioethanol From Cassava and Sweet Potato Peels,” Advances in Environmental Biology, vol. 6, no. 1, pp. 241–245, 2012.

M. Aiyejagbara et al., “Production of Bioethanol from Elephant Grass (Pennisetum purpureum) Stem,” International Journal of Innovative Mathematics, Statistics & Energy Policies, vol. 4, no. 1, pp. 1–9, 2016, [Online]. Available: www.seahipaj.org

C. Obianwa, A. U. Edak, and I. Godwin, “Bioethanol production from cassava peels using different microbial inoculants,” African Journal of Biotechnology, vol. 15, no. 30, pp. 1608–1612, Jul. 2016, doi: 10.5897/ajb2016.15391.

O. Oiwoh, B. V. Ayodele, N. A. Amenaghawon, and C. O. Okieimen, “Optimization of bioethanol production from simultaneous saccharification and fermentation of pineapple peels using Saccharomyces cerevisiae,” Journal of Applied Sciences and Environmental Management, vol. 22, no. 1, pp. 54–59, Feb. 2018, doi: 10.4314/jasem.v22i1.10.

N. K. Sari, I. Y. Purbasari, and Jariyah, “Bioethanol optimization in hydrolysis and fermentation process with surface response method,” Proceeding - 6th Information Technology International Seminar, ITIS 2020, pp. 297–300, Oct. 2020, doi: 10.1109/ITIS50118.2020.9320981.

E. B. Harari, “Bioethanol and technological innovation systems. A comparative analysis between the U.S. and Brazil,” 2007 Atlanta Conference on Science, Technology and Innovation Policy, ACSTIP, 2007, doi: 10.1109/ACSTIP.2007.4472886.

S. Mohite and S. Maji, “Biofuel Certification Performance: A Review & Analysis,” European Journal of Sustainable Development Research, vol. 4, no. 3, p. em0124, Mar. 2020, doi: 10.29333/EJOSDR/7864.

T. Oyegoke, M. Y. Sardauna, H. A. Abubakar, and E. Obadiah, “Exploration of Biomass for the Production of Bioethanol: ‘A Process Modelling and Simulation Study,’” Renewable Energy Research and Application, vol. 2, no. 1, pp. 51–69, 2021, doi: 10.22044/RERA.2020.10287.1042.

T. Oyegoke et al., “Trends of Progress in Setting up Biorefineries in Developing Countries: A Review of Bioethanol Exploration in Nigeria,” Journal of Renewable Energy and Environment, vol. 9, no. 1, pp. 37–52, Nov. 2022, doi: 10.30501/JREE.2021.278037.1197.

J. O. Madu and B. O. Agboola, “Bioethanol production from rice husk using different pretreatments and fermentation conditions,” 3 Biotech, vol. 8, no. 1, pp. 1–6, Jan. 2018, doi: 10.1007/s13205-017-1033-x.

T. Oyegoke, E. Obadiah, Y. S. Mohammed, O. A. Bamigbala, and O. A. Owolabi, “Utilization of Rice Husk for the Bioethanol Production: ‘A Waste to Wealth Innovation Study,’” in Sustainability Challenges & Transforming Opportunities: "Amidst Covid19”, vol. 1, S. Anuradha, B. Jyoti, K. S. Ravi, and S. Subodhika, Eds. New Delhi : Authorspress Global Network, 2021, pp. 54–63.

S. Olayemi, A. Ibikunle, and J. Olayemi, “Production of Ethanol from Cassava and Yam Peels Using Acid Hydrolysis,” Technology, and Sciences (ASRJETS) American Scientific Research Journal for Engineering, vol. 52, no. 1, pp. 67–78, 2019, [Online]. Available: http://asrjetsjournal.org/

A. Krishna, “A study on production of bioethanol from Solanum nigrum L. fruit,” 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2016, pp. 162–164, Oct. 2016, doi: 10.1109/ICEETS.2016.7582918.

A. A. Sari, N. Ariani, Muryanto, A. Kristiani, T. B. Utomo, and Sudarno, “Potential of oil palm empty fruit bunches for bioethanol production and application of chemical methods in bioethanol wastewater treatment: OPEFB for bioethanol and its wastewater treatment,” 2017 International Conference on Sustainable and Renewable Energy Engineering, ICSREE 2017, pp. 49–52, Jun. 2017, doi: 10.1109/ICSREE.2017.7951509.

E. Bardone et al., “Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse,” Chemical Eng Transactions, vol. 38, pp. 432–438, 2014, doi: 10.3303/CET1438073.

O. O. Ajayi, K. Rasheed, A. Onadeji, and T. Oyegoke, “Techno-economic Assessment of Transforming Sorghum Bagasse into Bioethanol Fuel in Nigeria: 1-Process Modeling, Simulation, and Cost Estimation,” Journal of Engineering Studies and Research, vol. 26, no. 3, pp. 154–164, 2020, Accessed: Mar. 18, 2021. [Online]. Available: http://jesr.ub.ro/1/article/view/219

L. V. A. Gurgel, K. Marabezi, M. D. Zanbom, and A. A. da S. Curvelo, “Dilute Acid Hydrolysis of Sugar Cane Bagasse at High Temperatures: A Kinetic Study of Cellulose Saccharification and Glucose Decomposition. Part I: Sulfuric Acid as the Catalyst,” Industrial and Engineering Chemistry Research, vol. 51, no. 3, pp. 1173–1185, Jan. 2012, doi: 10.1021/IE2025739.

E. A. Akponah and O. O. Akpomie, “Analysis of the suitability of yam, potato and cassava root peels for bioethanol production using Saccharomyces cerevisae,” International Research Journal of Microbiology (IRJM, vol. 2, no. 10, pp. 393–398, 2011, [Online]. Available: http://www.interesjournals.org/IRJM

O. Evuensiri Onoghwarite, N. Victor Ifeanyichukwu Obiora, E. Akachukwu Ben, and N.-O. Ekpe Moses, “Bioethanol production from corn stover using Saccharomyces cerevisiae,” International Journal of Scientific & Engineering Research, vol. 7, no. 8, pp. 290–293, 2016, [Online]. Available: http://www.ijser.org

D. Chuenbubpar, T. R. Srinophakhun, and P. Tohsakul, “Plant-wide Process Simulation of Ethanol Production from Empty Fruit Bunch,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 1, pp. 53–61, Dec. 2018, doi: 10.14416/J.IJAST.2017.12.007.

S. Ingale, S. J. Joshi, and A. Gupte, “Production of bioethanol using agricultural waste: Banana pseudo stem,” Brazilian Journal of Microbiology, vol. 45, no. 3, pp. 885–892, 2014, [Online]. Available: www.sbmicrobiologia.org.br

F. Mayasari and R. Dalimi, “Assessing Bioethanol Production to Fulfill Energy Demand in Indonesia Using System Dynamics Modeling,” IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 2018-October, pp. 741–746, Feb. 2019, doi: 10.1109/TENCON.2018.8650307.

T. Oyegoke, F. Dabai, J. Abubakar Muhammed, and B. El-Yakubu Jibiril, “Process Modelling and Economic Analysis for Cellulosic Bioethanol Production in Nigeria,” in 1st National Conference On Chemical Technology (NCCT 2017) , 2017, pp. 125–128. [Online]. Available: http://www.narict.gov.ng/ncct/

A. Abemi, T. Oyegoke, F. N. Dabai, and B. Y. Jibril, “Technical and Economic Feasibility of Transforming Molasses Into Bioethanol In Nigeria,” in National Engineering Conference, 2018, pp. 531–537.

T. Oyegoke, O. O. Ajayi, and R. O. Kolawole, “Techno-economic Assessment Of Transforming Sorghum Bagasse Into Bioethanol Fuel In Nigeria: 2 -Economic Analysis,” 2020.

T. Oyegoke and F. Dabai, “Techno-economic feasibility study of bioethanol production from a combined cellulose and sugar feedstock in Nigeria: 1-modeling, simulation and cost evaluation,” Nigerian Journal of Technology, vol. 37, no. 4, pp. 913–920, Nov. 2018, doi: 10.4314/njt.v37i4.8.

T. Oyegoke et al., “Exploration of Biomass for the Production of Bioethanol: ‘Economic Feasibility and Optimization Studies of Transforming Maize Cob into Bioethanol as a Substitute for Fossil Fuels,’” in European Biomass Conference and Exhibition Proceedings, 2021, pp. 1270–1275. doi: 10.5071/29THEUBCE2021-4BV.9.13.

I. M. Misau, I. M. Bugaje, J. Mohammed, I. A. Mohammed, and Diyau’deen .B.H., “Production Of Bio-Ethanol From Sugarcane: A Pilot Scale Study In Nigeria,” International Journal of Engineering Research and Applications (IJERA), vol. 2, no. 4, pp. 1142–1151, 2012, [Online]. Available: www.ijera.com

U. G. Akpan, A. S. Kovo, M. Abdullahi, and J. J. Ijah, “The Production of Ethanol from Maize Cobs and Groundnut Shells,” Assumption University (AU) Journal of Technology, vol. 9, no. 2, pp. 106–110, 2005.

P. Wine, O. Jerry, K. Aleke, E. Chika, N. Anthonia, and M. Ikechukwu, “Bioethanol Production from Corncob Hydrolysed by Cellulase of Aspergillus niger Using Zymomonas mobilis and Saccharomyces cerevisiae Isolated from International Journal of Current Research in Biosciences and Plant Biology Bioethanol Production from Cornco,” International Journal of Current Research in Biosciences and Plant Biology, vol. 3, no. 1, pp. 39–45, 2016, doi: 10.20546/ijcrbp.2016.301.004.

A. D. Tambuwal, A. S. Baki, and A. Bello, “Bioethanol Production from Corn Cobs Wastes as Biofuel,” Direct Research Journal of Biology & Biotechnology Sci, vol. 4, no. 2, pp. 22–36, 2018, doi: 10.26765/DRJBB.2018.5701.

R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition, 4th ed. New York: Prentice Hall, 2012.

BIO Nigeria, “BOI Micro Finance Bank | Bank of Industry, Nigeria,” BIO Report, 2021. https://www.boi.ng/subsidiaries/boi-micro-finance-bank/ (accessed Jan. 09, 2022).

Nigeria, “Bank of Industry | StartCredits,” StartCredit Report, 2022. https://startcredits.com/loans/bank-of-industry/ (accessed Jan. 09, 2022).

W. D. Seider, D. R. Lewin, J. D. Seader, S. Widagdo, R. Gani, and K. M. Ng, Product and Process Design Principles: Synthesis, Analysis and Evaluation, 4th ed. Wiley, 2016. Accessed: Jan. 09, 2022. [Online]. Available: https://www.wiley.com/en-us/Product+and+Process+Design+Principles%3A+Synthesis%2C+Analysis+and+Evaluation%2C+4th+Edition-p-9781119282631

R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, “Estimation of manufacturing costs,” Analysis, synthesis and design of chemical processes, pp. 242–274, 2008, Accessed: Jan. 09, 2022. [Online]. Available: https://books.google.com/books/about/Analysis_Synthesis_and_Design_of_Chemica.html?id=kWXyhVXztZ8C

M. G. Larson, “Analysis of variance,” Circulation, vol. 117, no. 1, pp. 115–121, Jan. 2008, doi: 10.1161/CIRCULATIONAHA.107.654335.

S. F. Sawyer, “Analysis of Variance: The Fundamental Concepts,” Journal of Manual & Manipulative Theraphy, vol. 17, no. 2, pp. 27E-38E, Apr. 2013, doi: 10.1179/JMT.2009.17.2.27E.

DesignExpert, “Stat-Ease » v11 » Designs » Response Surface Designs » Box-Behnken Design,” StateEase Report, 2021. https://www.statease.com/docs/v11/designs/box-behnken/ (accessed Nov. 06, 2021).

L. Wu, K. L. Yick, S. P. Ng, and J. Yip, “Application of the Box-Behnken design to the optimization of process parameters in foam cup molding,” Expert Systems with Applications: An International Journal, vol. 39, no. 9, pp. 8059–8065, Jul. 2012, doi: 10.1016/J.ESWA.2012.01.137.

T. Oyegoke, “Optimization of Rheological and Filtration Properties of Nigeria Clay using Factorial Design,” International Journal of Innovative Scientific & Engineering Technologies Research, vol. 1, no. 1, pp. 25–36, Jun. 2013, Accessed: Nov. 06, 2021. [Online]. Available: www.seahipaj.org

S. A. Pasma, R. Daik, M. Y. Maskat, and O. Hassan, “Application of box-behnken design in optimization of glucose production from oil palm empty fruit bunch cellulose,” International Journal of Polymer Science, vol. 2013, no. Article ID 104502, 2013, doi: 10.1155/2013/104502.

A. Bergek, I. Mignon, and G. Sundberg, “Who invests in renewable electricity production? Empirical evidence and suggestions for further research,” Energy Policy, vol. 56, pp. 568–581, May 2013, doi: 10.1016/J.ENPOL.2013.01.038.

W. H. Reuter, J. Szolgayová, S. Fuss, and M. Obersteiner, “Renewable energy investment: Policy and market impacts,” Applied Energy, vol. 97, no. Sept, pp. 249–254, Sep. 2012, doi: 10.1016/J.APENERGY.2012.01.021.




DOI (PDF): https://doi.org/10.20508/ijrer.v12i1.12621.g8413

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4