Hydrogen Storage Evolution on Intermetallic LaMg2Ni5Al4

Hassen Jaafar, Chiheb Slama, Ines Sahli, Arij Dhiab, Marwa Ayari, Mohieddine Abdellaoui

Abstract


Research on hydrogen storage alloys is offering actually a wide range of chemisorption-materials that can store or release safely interesting amount of hydrogen regarding classic pressurized or cryo-liquid container needing expensive and permanent maintenance procedure. In this context, rigorous hydrogenation experiment was elaborated on new AB3 compound LaMg2Ni5Al4 recently investigated as quaternary intermetallic material. X-ray diffraction analysis shows that two different pathways could be used from elementary metals or binary precursors to fulfil the desired crystal phase. Careful screening of the AB3 alloy thermal stability was carried out before hydrogenation. Differential thermal analysis DTA demonstrates that this compound can support heating flow up 800 °C without any degradation. Straight solid-gas hydrogenation process was controlled and acquired following meticulously the pressure. It was demonstrated that hydrogen sorption is following a first-order exponential Avrami model. Interestingly, the kinetic study illustrates that lower activation energy (a gap of 90 kJ.mol-1) is observed comparing the intermetallic from binary precursor. Results show also that this compound is prominent candidate serving stabilized solid-Hydrogen as bulk reservoir and hydrogen absorption measurement endorsed that bulk intermetallic hydride is achieved.

Keywords


Metals and alloys; Hydrogen storage; Thermal analysis; Intermetallic compounds

Full Text:

PDF

References


W. McDowall, “Exploring possible transition pathways for hydrogen energy: A hybrid approach using socio-technical scenarios and energy system modeling”, Futures, vol. 63, pp. 1-14, 2014.

E. Rivard, M. Trudeau, K. Zaghib, “Hydrogen Storage for Mobility: A Review”, Materials, vol. 12(2), No. 1973, 2019.

D.P. Broom, C.J. Webb, K.E. Hurst, “Outlook and challenges for hydrogen storage in nanoporous materials”, Appl. Phys. A, vol. 122, No. 151, 2016.

K.T. Møller, T.R Jensen, E. Akiba, H-w. Li, “Hydrogen - A sustainable energy carrier”, Pro. Nat. Sci-Mater., vol. 27(1), pp. 34-40, 2017.

JB. von Colbe, J-R Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, M. Dornheim, “Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives”, Int. J. Hydrogen Energy, vol. 44(15), pp. 7780-7808, 2019.

J. Abe, A. Popoola, E. Ajenifuja, O.M. Popoola, “Hydrogen energy, economy and storage: Review and recommendation”, Int. J. Hydrogen Energy, vol. 44(29), pp. 15072-15086, 2019.

R. Moradi, K.M. Growth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis”, Int. J. Hydrogen Energy, vol. 44(23), pp. 12254-12269, 2019.

J. Chen, H.T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, M. Haruta, “Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure”, J. Alloy. Compd., vol. 302(1-2), pp. 304-313, 2000.

M. Jurczyk, Handbook of Nanomaterials for Hydrogen Storage, Singapore: Pan Stanford, 2017.

W. Liu, C.J. Webb, E.M.A. Gray, “Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications”, Int. J. Hydrogen Energy, vol. 41(5), pp. 3485-3507, 2016.

B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, “A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys”, J. Alloy. Compd., vol. 379(1-2), pp. 186-195, 2004.

A. Jemni, S. Ben Nasrallah, J. Lamloumi, “Experimental and theoretical study of a metal-hydrogen reactor”, Int. J. Hydrogen Energy, vol. 14(7), pp. 631-644, 1999.

R. Sarhaddi, H. Arabi, F. Pourarian, “Structural, morphological, magnetic and hydrogen absorption properties of LaNi5 alloy: A comprehensive study”, Int. J. Mod. Phys. B, vol. 28(14), No. 1450079, 2014.

M. Lotoskyy, R. Denys, V.A. Yartys, J. Eriksen, J. Goh, S.N. Nyamsi, C. Sita, F. Cummings, “An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance”, J. Mater. Chem. A, vol. 6, pp. 10740-10754, 2018.

V.B. Son, B.P. Tarasov, “Hydrogen-Sorption Properties of La3–xMgxCo9 (x = 1.2, 1.5, and 2) Intermetallic Compounds”, Russ. J. Inorg. Chem., vol. 65(2), pp. 147-153, 2020.

H. Jaafar, A. Dhiab, C. Slama, I. Sahli, M. Abdellaoui, “Synthesis of quaternary nano-intermetallic LaTi2Ni5Al4 with its hydrogen encapsulation and inspection using lithium-hydride cell”, Micro Nano Lett., vol. 15(3), pp. 201-205, 2020.

Q. Luo, J. Li, B. Li, B. Liu, H. Shao, Q. Li, “Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism”, J. Magnes. Alloy., vol. 7(1), pp. 58-71, 2019.

Y. Zhang, P. Wang, W. Bu, Z. Yuan, Y. Qi, S. Guo, “Improved hydrogen storage kinetics of nanocrystalline and amorphous Ce-Mg-Ni-based CeMg12-type alloys synthesized by mechanical milling”, RSC Adv., vol. 8, pp. 23353-23363, 2018.

Y. Sun, C. Shen, Q. Lai, W. Liu, D-W. Wang, K-F Aguey-Zinsou, “Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art”, Energy Storage Mater., vol. 10, pp. 168-198, 2018.

W. Wang, W. Guo, X. Liu, S. Zhang, Y. Zhao, Y. Li, L. Zhang, S. Han, “The interaction of subunits inside superlattice structure and its impact on the cycling stability of AB4-type La-Mg-Ni-based hydrogen storage alloys for nickel-metal hydride batteries”, J. Power Sources, vol. 445, No. 227273, 2020.

X. Zhao, D. Ke, Y. Cai, F. Hu, Dr. J. Liu, L. Zhang, S. Han, “A Novel Synthesis Method of La-Mg-Ni-based Superlattice by LaNi5 Absorbing Gas-state Mg”, ChemistrySelect, vol. 4(27), pp. 8165-8170, 2019.

W. Wang, R. Qin, R. Wu, X. Tao, H. Zhang, Z. Ding, Y. Fu, L. Zhang, L. Wu, Y. Li, S. Han, “A promising anode candidate for rechargeable nickel metal hydride power battery: An A5B19-type La-Sm-Nd-Mg-Ni-Al-based hydrogen storage alloy”, J. Power Sources, vol. 465, No. 228236, 2020.

Y. Zhang, H. Sun, W. Zhang, Z. Yuan, X. Wei, J. Gao, H. Ren, “Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys”, Int. J. Hydrogen Energy, vol. 46(56), pp. 28719-28733, 2021.

E.M. Dematteis, N. Berti, F. Cuevas, M. Latroche, M. Baricco, “Substitutional effects in TiFe for hydrogen storage: a comprehensive review”, Mater. Adv., vol. 2, pp. 2524-2560, 2021.

M. Shatnawi, N. Al Qaydi, N. Aljaberi, M. Aljaberi, “Hydrogen-Based Energy Storage Systems: A Review”, 7th International Conference on Renewable Energy Research and Applications (ICRERA), pp. 697-700, 14-17 October 2018.

Y. Takmi, Y. Takaki, M. Shinohara, Y. Matsuda, H. Fujiyama, “Hydrogenation of Si(110) surface due to hydrogen plasma exposure, investigated with in-situ MIR-IRAS”, International Conference on Renewable Energy Research and Applications (ICRERA), pp. 1-3, 11-14 November 2012.

B. Zafar, “Design of a Renewable hybrid photovoltaic-Electrolyze-PEM/Fuel Cell System using Hydrogen Gas”, International Journal of Smart Grid, vol. 3, No. 4, pp. 201-207, 2019.

S. Gherairi, “Zero-Emission Hybrid Electric System: Estimated Speed to Prioritize Energy Demand for Transport Applications”, International Journal of Smart Grid, vol. 3, No. 4, pp. 180-187, 2019.

J. Morel, S. Obara, K. Sato, D. Mikawa, H. Watanabe and T. Tanaka, “Contribution of a hydrogen storage-transportation system to the frequency regulation of a microgrid”, International Conference on Renewable Energy Research and Applications (ICRERA), pp. 510-514, 22-25 November 2015.

H. Jaafar, L. Aymard, W. Dachraoui, A. Demortière, M. Abdellaoui, “Preparation and characterization of mechanically alloyed AB3-type based material LaMg2Ni5Al4 and its solid-gaz hydrogen storage reaction”, J. Solid State Chem., vol. 260, pp. 73-79, 2018.

D.P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties, Green Energy and Technology, London: Springer-Verlag, 2011.

G. Walker, Solid-State Hydrogen Storage: Materials and Chemistry, Cambridge England: 1st Edition Woodhead Publishing, 2008.

S.A. Sherif, D.Y. Goswami, E.K. Stefanakos, A. Steinfeld, Handbook of Hydrogen Energy 1st Edition, Florida USA: CRC Press Taylor & Francis, 2014.

J. Liu, S. Han, Y. Li, L. Zhang, Y. Zhao, S. Yang, B. Liu, “Phase structures and electrochemical properties of La-Mg-Ni-based hydrogen storage alloys with superlattice structure”, Int. J. Hydrogen Energy, vol. 41(44), pp. 20261-20275, 2016.

J. Kleperis, L. Grinberga, M. Ergle, G. Chikvaidze, J. Klavins, “Thermogravimetric research of hydrogen storage materials”, J. Phys.: Conf. Ser., vol. 93, No. 012027, 2007.

M.V. Blanco, E. Zelaya, M.R. Esquivel, “Study of the Thermal Stability in Air of LaNi5 by DSC, EDX, TEM and XRD Combined Techniques”, Procedia Mater. Sci., vol. 1, pp. 564-571, 2012.

F. Cuevas, J-M. Joubert, M. Latroche, A. Percheron-Guégan, “Intermetallic compounds as negative electrodes of Ni/MH batteries”, Appl. Phys. A, vol. 72(2), pp. 225-238, 2001.

K. Buschow, H. Van Mal, A. Miedema, “Hydrogen absorption in intermetallic compounds of thorium”, J. Less Common Met., vol. 42(2), 163-178, 1975.

G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloy. Compd., vol. 293-295, pp. 887-888, 1999.

M. Hirscher, V.A. Yartys, M. Baricco, JB.von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y. Whan Cho, J-C Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, C Zlotea, “Materials for hydrogen-based energy storage - past, recent progress and future outlook”, J. Alloy. Compd., vol. 827, No. 153548, 2020.

K. Manickam, P. Mistry, G. Walker, D. Grant, C.E. Buckley, T.D. Humphries, M. Paskevicius, T. Jensen, R. Albert, K. Peinecke, M. Felderhoff, “Future perspectives of thermal energy storage with metal hydrides”, Int. J. Hydrogen Energy, vol. 44(15), pp. 7738-7745, 2019.

K. Kadir, T. Sakai, I. Uehara, “Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9”, J. Alloy. Compd., vol. 287(1-2), pp. 264-270, 1999.

A. Andreasen, “Hydrogenation properties of Mg-Al alloys”, Int. J. Hydrogen Energy, vol. 33(24), pp. 7489-7497, 2008.

M. Zhu, Y. Lu, L. Ouyang, H. Wang, “Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review”, Materials, vol. 6(10), pp. 4654-4674, 2013.

A. Züttel, “Hydrogen storage methods”, Naturwissenschaften, vol. 91(4), pp. 157-172, 2004.

M. Latroche, in: E. Burzo (Eds.), Hydrogen Storage Materials, Advanced Materials and Technologies, Berlin: Springer, 2018, vol. 8, pp. 151-157.

A. Baran, M. Polanski, “Magnesium-Based Materials for Hydrogen Storage-A Scope Review”, Materials, vol. 13(18), No. 3993, 2020.

A. Perejón, P.E. Sánchez-Jiménez, J.M. Criado, “Magnesium hydride for energy storage applications: The kinetics of dehydrogenation under different working conditions”, J. Alloy. Compd., vol. 681, pp. 571-579, 2016.

P.M. Grigoreva, Y.A. Yakovlev, A.M. Polyanskiy, in: V.A. Polyanskiy, A.K. Belyaev (Eds.), Advances in Hydrogen Embrittlement Study, Advanced Structured Materials, Switzerland: Springer, 2021, vol. 143, pp. 131-142.

X. Yang, Q. Hou, L. Yu, J. Zhang, “Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite”, Dalton Trans., vol. 50, pp. 1797-1807, 2021.

Y. Zhang, J. Li, T. Zhang, T. Wu, H. Kou, X. Xue, “Hydrogenation thermokinetics and activation behavior of non-stoichiometric Zr-based Laves alloys with enhanced hydrogen storage capacity”, J. Alloy. Compd., vol. 694, pp. 300-308, 2017.

C. Kura, Y. Kunisada, E. Tsuji, C. Zhu, H. Habazaki, S. Nagata, M.P. Müller, R.A. De Souza, Y. Aoki, “Hydrogen separation by nanocrystalline titanium nitride membranes with high hydride ion conductivity”, Nat. Energy, vol. 2, pp. 786-794, 2017.




DOI (PDF): https://doi.org/10.20508/ijrer.v11i4.12403.g8311

Refbacks

  • There are currently no refbacks.


Online ISSN: 1309-0127

Publisher: Gazi University

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics);

IJRER has been cited in Emerging Sources Citation Index from 2016 in web of science.

WEB of SCIENCE in 2025; 

h=35,

Average citation per item=6.59

Last three Years Impact Factor=(1947+1753+1586)/(146+201+78)=5286/425=12.43

Category Quartile:Q4