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Abstract- In recent decades, the prevalence of microgrids with the resolution of more exploitation of demand-side renewable 
energy  resources  has been vastly increased. The advantages of microgrids such as reduction of operation  costs, use of clean 
 renewable energy, and improvement in the reliability of the system have assumed  significant attention to this  subject. In this 
regard, the optimization of microgrids is an important  item, which reinforces the plus sides  of microgrid scheme. The demand 
response programs (DRPs) are  practical tools accessible for the operator to  facilitate and optimize the management of the 
grid’s  operation and are counted as novel evolutions in  modern power systems. Demand response implies  that the consumers 
can have participation in reshaping and correction of the load pattern. These  programs can achieve considerable profits from 
both consumers and the grid point of view such as  reduction of load shedding, mitigation of generation cost, smoothing the 
load curve, alleviation of  price fluctuations in electricity markets etc. In this study, a new energy management scheme is 
 proposed in order to obtain the optimized performance of the microgrid in presence of renewable  resources. The short-term 
operational costs are declined by incorporation of incentive-based programs (IBP). The results of the simulations are illustrated 
through three scenarios  to assess the improvements in costs and emissions. The implication of the presence of renewable and 
 demand response resources is investigated in these scenarios. Moreover, the Chicken swarm optimization algorithm is 
employed to conduct the optimization of the objective function. The results reveal that the suggested scheme is effective and 
beneficial. 

Keywords: Microgrid, uncertainty, energy management system, renewable energy resources, demand response resources. 

 

1. Introduction 

The dramatic increase in energy consumption and massive 
emission of greenhouse gases due to  energy consumption 
have aroused serious mounting concern, which has been 
leading to one of the  most vital issues of the modern world in 
the 21st century. Hence, feasible solutions must be put 
 forward in order to deal with the problems. Some currently 
used solutions are the efficiency improvement in the 
industries and energy audit, reduction of residential and 
commercial losses, and correction and upgrade  of energy 
management principles. Recent studies have implied that 
around 20% to 30% of the  consumption can be mitigated 

without any physical change in the system’s structure only 
with  the employment of optimized and managed 
performances and decisions. Therefore, some options are 
 declared by the researchers to tackle this problem, one of 
which is to utilize distributed generation  resources, 
particularly renewable resources such as wind and solar, to 
alleviate the emission and  losses. Hence, microgrid schemes 
are introduced as a new concept in the modern power system 
 operation and planning, which are mostly based on renewable 
resources along with smart grid  infrastructure, and they are 
usually capable of exchanging power with the main grid or 
other microgrids  [1]. The generation resources include solar 
panel, fuel cell, wind turbines, battery, micro-turbine,  and 
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diesel generator. Besides, if the microgrids can be able to 
exchange power with the upstream  grid, they operate more 
efficient economically and technically. The presence of 
 controllable loads for consumption pattern modification is 
another advantage of microgrids. The implementation of 
demand response programs (DRPs) has become viable thanks 
to information and telecommunications  infrastructures and 
advanced metering devices [2].    

So far, various researches are conducted on the 
deployment of distributed generation. In [3], the size of an 
isolated microgrid, which is exclusively supplied by 
renewable energy resources, is optimized. In the supposed 
microgrid, an energy storage facility is utilized to improve the 
reliability of microgrid. In [4], various approaches are 
compared in order to obtain the most optimum size of 
microgrids, which highly depend on renewable resources. 
Besides, the optimization of the size of a microgrid’s 
components including photovoltaic, wind, and battery bank is 
carried out using an iterative approach in [5]. The 
aforementioned multi-objective optimization problem is 
subject to maximize the reliability of power supply in addition 
to the minimization of normalized electricity price. The 
mentioned study is conducted regardless of DRPs and 
elasticity of demand as well as the stochastic nature of 
renewable resources and the loads. DRPs are mainly able to 
decrease the operational costs of power systems. In these 
programs, the consumers are promoted or forced to change 
their load pattern corresponded with the change in the time-
based electricity tariffs or they are encouraged to decrease 
their consumption or shift them to receive financial 
incentives, especially at peak hours when the market prices 
are high and the reliability and security of the system is 
threatened [6]. The authors in [7] have proposed a model, in 
which the microgrid’s operator does not impose any 
obligation on the consumers, and the customers do not receive 
any incentive for participation in the program. In [8], the 
power dispatch management is studied exclusively for an 
isolated system. In [9], the impact of responsive loads on 
generation management of an isolated microgrid is 
investigated. In [10], a cost assessment is carried out for a 
microgrid in two cases of capable of selling electricity to the 
upstream network or incapable of exchanging power with the 
main grid. In this work, the responsive load is considered to 
be the maximum rate of interruptible loads. In addition, in a 
comprehensive work [11], the microgrid is considered to be 
disconnected from the main grid and the implication of 
uncertainty of renewable resources as well as environmental 
concepts and electricity production management are taken 
into account. In [12], similar to the [10], the cost-effective 
assessment is conducted for a microgrid, which is isolated 
from the upstream grid. In this work, various scenarios are 
defined, in which different configuration of generation 
resources and energy storage devices are compared. 
Moreover, in the reference [13], a day-ahead schedule and a 
real-time schedule in five-minute intervals are introduced. In 
[14], a study is conducted about bi-level cost management for 
microgrids. In the first stage, the aim is to maximize the profit 
of the system and in the second stage, the optimization is 
done subject to minimize the reserve costs regard to 
redressing the forecasting errors.  

The renewable energy resources such as wind, solar as 
well as the scheduled load have inherent stochastic nature. In 
the literature, described above, the energy management, the 
operation of a microgrid, and optimization of the microgrids’ 
components are evaluated regardless of the intermittent nature 
of these parameters. Although the neglect of stochastic nature 
eases the problem-solving procedure and simplifies the 
modeling, this matter has a negative impact on the reliability 
and social welfare indices. In the following part, some studies 
have been stated, in which the stochastic nature of the 
resources and loads are taken into consideration. In [15], two 
probabilistic density functions for the forecast of wind speed 
and solar radiation have been employed to perform the 
stochastic operation scheduling of the microgrid. In [16], the 
impact of uncertainty on the determination of the size of 
components of an off-grid microgrid including photovoltaic 
and battery is analyzed. In this paper, the daily electrical load 
is modeled probabilistically, and it is optimized based on the 
net present cost and loss of load probability. In the previous 
works, the impacts of demand response resources on the 
optimization of the size of microgrid’s components are not 
explored. 

In this paper, presented by us, a model of generation 
dispatch aiming to minimize the operational costs and 
emission of greenhouse gases regard to the use of incentive-
based DRPs is proposed. The consumers are classified into 
three categories of residential, commercial and industrial, 
which can have voluntary participation in DRPs. The 
Chicken swarm optimization algorithm (CSO) is employed 
as the vehicle of optimization subject to minimize the 
operational costs and emission. In section 2, the system’s 
components are individually explained and their 
corresponding uncertainties are modeled. In section three, the 
objective function and the prevailing constraints of the 
problem are described. In the fourth section, the CSO 
algorithm is thoroughly explained. In section five, the 
simulation results are presented and discussed. Ultimately, in 
the last section, the conclusions are drawn. 

2. The Modeling of the System’s Components 

The modeling of inherent uncertainties and forecasting 
errors are of the most important items in the design of 
microgrids. In this study, the applied uncertainties are 
renewable energy resources (photovoltaic modules and wind 
turbines), the targeted hourly load level and the hourly 
electricity price. The historical records of the uncertain 
parameters are provided to obtain an appropriate probability 
density function. Besides, at the end of this section, the 
modeling of the energy storage facility is also described [17]. 

2.1. Renewable Energy Resource Modeling 
The amount of solar power generation corresponds with 

the solar irradiance and the ambient temperature. In addition, 
wind power generation depends on wind speed and the type 
of the utilized turbine. These characteristics of a turbine rely 
on the geographic features of the installation site. Therefore, 
initially, the solar radiation, temperature and wind speed 
historical data of the location of installation site of the turbine 
must be provided and analyzed [18].  
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a. Solar Irradiance Modeling   

The output power of each photovoltaic (PV) array can be 
specified by Eq. (1): 

( )1pv STC MPT c a
STC

SP P k T T
S

= × × + −⎡ ⎤⎣ ⎦  (1) 

PSTC represents the active power of PV module in the 
standard test condition, SSTC is the radiation intensity in the 
standard test condition, Tc shows the PV cell temperature, 
kMPT denotes the heat factor of maximum power, and S and Ta 
stand for radiation intensity and temperature of the 
installation site respectively [19]. Beta distribution employed 
for modeling of the radiation intensity of S (kW/m2) at the 
time interval of t, which can be described by Eq. (2): 
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Where, Γ stands for Gamma function, and α and β 
represents can be obtained by the above equation, in which µs 
represents the mean value and σs is the standard deviation. 

b. Wind Modeling 
The Weibull distribution function can be used 

appropriately to model the wind generation [20]. This 
function is formulated using three parameters as shown in Eq. 
(3): 
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In the above equation, fw(v) represents the Weibull 
distribution function, v0 stands for location parameter, k 
denotes the shape parameter, and c shows the scale parameter 
in Weibull distribution. In above, µv and σv are the mean value 
and standard deviation of wind speed respectively [21]. Eq. 
(4) shows the correlation between wind speed and output 
active power of wind turbines.  
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vr is the rated wind speed, vci shows the cut-in speed 
characteristic of the wind turbine, and vco represents the cut-
out speed characteristic of the turbine. Pr indicates the rated 
power of the wind turbine. In addition, k1 and k2 are randomly 
sampled numbers derived from [0,1] based on chosen 
distribution function [22].  
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2.2. Energy Price and Demand 
The intermittent and volatile nature of the demand and the 

hourly electricity price can be modeled by a normal 
distribution as employed in Eq. (6). As mentioned before, µ 

represents the mean value and σ denotes the standard 
deviation, and x shows can be active or reactive power of 
demand [23].  

2

2
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2.3. Micro-turbine Model 
The micro-turbine (MT) technology is an advanced model 

of gas turbines, which is manufactured in smaller scales and 
operates at higher rotational speeds of turbine blades. This 
technology has some advantages over gas turbines such as 
low noise pollution and more flexibility in consuming fuel. 
They are usually manufactured in the range of 25 to 200 kW 
and their speed varies from 5000 to 90000 rpm [24]. The 
output voltage is about 400 v and the bearings are of air type. 
The MT cost function can be characterized by Eq. (7):  

, , ,t MT MT MT t MT t MTF C F P T OM= × × ×Δ +  (7) 
In the above equation, Ft,MT represents the total 

operational cost of the turbine ($), CMT is the fuel cost 
coefficient of the MT ($/m3) that is considered to be 0.3571 
$/m3 for the natural gas, FMT shows the amount of consumed 
fuel for generation of one kWh electrical energy (m3/kWh), 
which is assumed to be 0.85 m3/kWh in this study. Pt,MT 
denotes the output power of the MT and is regarded as one of 
the decision-making variables (kW). Besides, Δt is the 
scheduling interval which is supposed to be equal with 1 hour 
in this work. OMt,MT expresses the O&M costs ($), which is 
corresponded with the amount of generated power at each 
hour [25].  

, , ,0.00587t MT OC t MT t MTOM k P T P T= × ×Δ = × ×Δ  (8) 
In the above equation, the proportional constant of kOC is 

supposed to be 0.00587 $/kWh. The output power of the MT 
is also restrained by the following boundaries: 

,
min max
MT t MT MTP P P≤ ≤  (9) 

2.4. Energy Storage System 
The storage units can have three main applications of bulk 

energy time-shifting, frequency stability regulation (in small 
scale), and power reliability [26, 27]. The appropriate type of 
storage must be selected according to their application 
(charge and discharge speed, quantity of charge-discharge 
cycles, and scalability) [28-31]. The charging and discharging 
rates are important factors in energy storage systems. Thus, 
Eq. (10) is used in order to model this restriction [32-34]. 
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Where, Wess,min is the minimum storable level of energy 
in the ESS, Wess,max shows the maximum level of energy that 
can be stored in ESS, and Pch/dis,max represents the maximum 
nominal charging/discharging rate of the ESS within the 
interval of Δt. Each storage facility, such as a battery, can be 
charged or discharged with a specific rate, and the accessible 
amount of power which can be supplied by a storage device 
is limited to this rate. The storage utility normally stores 
electricity at off-peak and deliver it to the microgrid at peak. 
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3. Problem Outlines 

3.1. Demand Response Model  
The microgrid’s scheme is designed so that the wind and 

solar units are used mainly to meet the demand basically, and 
the stochastic deficiency must be redressed by demand 
response resources. The demand would be supplied by MT, 
wind, solar, battery, and demand response resources (as 
virtual demand-side power plants) with the target 24-hour 
period. The purpose of this study is to minimize the 
operational costs and emissions and to compare the cases of 
inclusion and exclusion of demand response resources, while 
the prevailing equality and inequality constraints are imposed 
with respect to the uncertainties of wind and solar generation. 
In this study, the consumers are classified into three types of 
residential, commercial, and industrial, and the following 
equations demonstrate the model of these loads [35]. 

max
,( , ) ( , ) ( , )r t tRP r t RC r t RC r t RCπ= × ≤  (11) 

max
c,    ( , ) ( , ) ( , )t tCP c t CC c t CC c t CCπ= × ≤  (12) 

max
,( , ) ( , ) (   ,  )i t tIP i t IC i t IC i t ICπ= × ≤  (13) 

In the above-stated formulas, r, c and i stand for 
residential, commercial and industrial consumers respectively. 
RC(r,t), CC(c,t), and IC(i,t) represent the amount of 
consumption reduction by each type of the loads at the 
interval of t. RCt

max, CCt
max, and ICt

max are the maximum 
offered consumption reduction by each type of loads. In 
addition, πr,t, πc,t and πi,t represent the incentive for each type 
of demand at interval of t; and RP(r,t), CP(c,t) and IP(i,t) 
show the cost of demand response by the residential, 
commercial and industrial loads at the interval of t.  

3.2. Objective Function 

The objective function of this study includes minimization 
of operational costs of the microgrid and emission of 
greenhouse gases, in regard or disregard to the influence of 
demand response resources.  

a. Operational objective function 
The operational objective function consists of cost 

functions for each generation unit in addition to their specific 
startup and shutdown costs added by the cost of the energy 
storage unit and the cost of implementation of DRPs for the 
entire time horizon. These constraints are described as the 
following equations: 
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In above, PDGi(t) and Psj(t) are the output power of the ith 
generator and the jth storage unit at interval t. Besides, BDGi(t) 
and Bsj(t) are the offers of the ith generator and the jth storage 
unit at interval t. SDGi(t) and Ssj(t) are defined to show the 
startup and shutdown costs of the ith generator and the jth 
storage unit at the interval of t. In addition, PGrid-buy(t) and 
PGrid-sell(t) are the bought or sold power from/to the upstream 
distribution company at the interval of t. furthermore, BGrid-

buy(t) and BGrid-sell(t) are the bids of the consumers to exchange 
power with the main grid at the tth period. Ultimately, PDR(t) 
and BDR(t) are the amounts of power and the suggested price 
for the participants of the DRP [36].  

When the objective function is called, x is considered as 
the decision making variable, which composed of the output 
power of each individual generation unit, the amount of 
power exchange with the upstream grid, the amount of load 
reduction (load shedding) provided by the DR participants, 
and the ON/OFF state of the units for the targeted prospect of 
the dispatch schedule for the next day, which can be displayed 
as below: 
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 (21) 

Where n represents the number of decision-making 
variables; NDG and Ns are the sets of generation and storage 
units; T denotes the time horizon of the schedule, and Pg 
signifies the active power vector, which consists of all DG 
and storage units as well as participants of demand response 
resources. Ug demonstrates the state vector of the units and it 
indicates which unit is ON or OFF during the target time 
horizon.   

b. Greenhouse gases objective function   
The emission objective function is considered to be 

composed of CO2 (carbon dioxide), SO2 (sulfur dioxide), NOx 
(Nitrogen dioxide). 
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(22) 

In the above equation, EDGi(t), Esj(t), and EGrid(t) represent 
the amount of emission in kg/MWh-1 for each generator, 
storage devices, and grid-side provided power at the interval 
of t. The proposed objective function is comprised of the 
operation cost and the emission cost of existing generating 
units in the microgrid that is shown by Eq. (23) and must be 
minimized.  
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3.3. Problem Constraints 
These constraints include load equality, the active 

generation limitation, and battery restriction which can be 
pointed out by the following equation: 
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Where PdemandL(t) indicates the demand level of L, and NL 
is the total number of demand’s levels.  
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In above, PDGi,min(t), Psj,min(t), and PGrid min(t) are the 
minimum capability of providers (the ith DG, jth storage unit, 
or upstream distribution grid) to maintain demanded power. 
PDGi,max(t), Psj,max(t), and PGrid max(t) represent the maximum 
generation capability of each supplier at the interval of t. 
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Where, the first equation indicates the battery capacity, 
which can vary hour to hour and relies on charging and 
discharging rates. The second equation points out that the 
battery can be charged or discharged at each individual hour 
but not simultaneously. Ψj(t) and Ψj(t-1) express the stored 
energy at the current and previous hour. Besides, PCsj(t) and 
PDsi(t) are the allowed charge/discharge rate of the storage. 
λDj and λCj are the round-trip efficiency of the conversion 
loop in discharging and charging modes. 

4. The Chicken Swarm Optimization Algorithm 

Chicken swarm optimization is a stochastic optimization 
approach that is inspired by the searching behavior of the 
swarm of chickens. For simplicity of chickens’ behaviors, 
the following rules are idealized [37]:  

1- The chicken swarm consists of several groups. Each 
group includes a dominant rooster, some hens, and chicks. 

2- The way of division of chicken swarm into several 
groups and the identification of chickens (including roosters, 
hens, and chicks) all relies on chicken’ fitness value. The 
chickens that acquired the better fitness values are would be 
treated as roosters so that each one the roosters are dedicated 
head of one group. The chickens that have obtained the worst 
fitness values are acted as chicks and the rest of the chickens 
are would be designated as hens. The hens are dispersed in 
the groups randomly. Besides, the mother-child relationship 
would be established by random sampling (between chicks 
and hens).  

3- The parameters of the mother-child relationship, 
dominance relationship, and hierarchal order in a group will 
not change and will remain fixed. The status of each 
parameter will be updated every G iteration. 

4- The hens follow the head of the group which is a 
rooster to look for food. The chicks usually search for food 
in the vicinity of their mother.  The chickens inherently 
prevent each other from eating their own food. It is assumed 
that the chickens steal the ones good food which is found by 
other chickens. The superior chickens are more probable to 
win the competition to find food. In another word, they 
dominant chickens have the advantage to be survived. 

The parameters of RN, HN, CN, and MN stand for the 
quantity of the roosters, the number of hens, the number of 
chicks, and the number of mother hens, respectively. It is 
ruled that better RN chickens are selected as roosters, while 
worse CN chickens are treated as chicks. The rest of the 
chickens will be regarded as hens. Each individual (roosters, 
hens, and chicks) will be described by their position of 
Xt

i,j(iϵ[1,…,N],jϵ[1,…,N]) at the time step of t, and they will 
look for food within a D-dimensional space. In this study, the 
minimal values are more desired, and the roosters (RN 
chickens) will correspond to the individuals which have 
minimal fitness values. The position updating function of 
each individual defers from other ones. These updating 
functions will be explained in the following part [38]: 
A. The movement of the roosters       

If a rooster has better fitness value (more minimal) it will 
have priority over the other roosters with worse fitness values 
to access food. In order to simplify the approach, this 
situation can be simulated by the assumption that the rooster 
with more optimal fitness values can search a wider range of 
places for food. These phenomena can be formulated as 
follows:  

1 2
, , *(1 (0, ))t t
i j i jx x Randn σ+ = +  (27) 

[ ]2

1 , ,
1, ,( )

exp( ) , ,

i k

k i

i

if f f
k N k if f

otherwise
f

σ

ε

⎧ ≤
⎪

= ∈ ≠−⎨
⎪ +⎩

 (28) 

Where, Randn(0,σ2)  denotes the normal distribution with 
the mean value of 0 and the  standard deviation of  σ2. The 
parameter of ε  (which is the smallest constant value in  a 
computer) is assigned to avoid the error of division by zero. k 
indicates the index of the  rooster, which is chosen by random 
sampling from the set of roosters. f shows the  fitness value of 
the corresponding x. 
B. The hens' movement  

The hens follow their own leader rooster of the group to 
forage for the foods. In addition, they can find the foods of 
other individuals by chance. However, they may be repressed 
by other chickens. The more dominant hens certainly have the 
advantage in competing for gaining food than the more 
submissive hens. These matters can be modeled 
mathematically as below:  

, 1 r1, ,1
,

2 r 2, ,

* *( )

* *( )

t t t
i j j i jt

i j t t
j i j

x S Rand x x
x

S Rand x x
+

⎛ ⎞+ −
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

 (29) 

1 1exp(( ) / ( ( ) ))i r iS f f abs f ε= − +  (30) 

2 2S exp(( ))r if f= −  (31) 
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Fig. 1. The flowchart of the optimized scheduling of the targeted microgrid

Where Rand is a randomly sampled number derived from 
the uniform distribution. Besides, r1ϵ[1,…,N] represent the 
index of the rooster, which is a group-mate of the ith hens, 
while r2ϵ[1,…,N] stands for the index of a chicken (rooster 
or hen ), which has been randomly chosen from the swarm. It 
can be easily perceived that r1≠r2. 
C. The chicks’ movement 

The chicks follow their mothers to find food that can be 
modeled by Eq. (32). 
   1

, , , ,*( )t t t t
i j i j m j i jx x FL x x+ = + −  (32) 
In the above equation, xm,j

t defined the position of the ith 
mother (mϵ[1,N]). FL(FLϵ(0,2)) signifies the fact that the 
chicks would follow their own mother to forage for food. 
Paying attention to the individual differences, the FL of each 
chick must be chosen between 0 and 2.  

   ( )1 iif E
Nθ

θ
ω ω= × + −

∑  (33) 

The role of CSO in the procedure of the optimization 
problem is illustrated in Fig. 1. Fig. 2 shows the semi-code of 
CSO algorithm. 

Initialize RN, HN, CN, MN, G; 
Randomly initialize each chicken in the swarm Xi(i=1,2,…, N).; 
Initialize the max numbers of iteration Tmax; 
while T <Tmax do for each iteration 

if T%G equals 0 then 
Rank the chickens fitness values and establish a 
hierarchal order in the swarm; 
Divide the swarm into different groups, and 
determine the relationship between the chicks 
and mother hens in a group; 

end 
foreach chicken Xi in the swarm do 

if Xi is a roster then 
Update Xi’s location using Eq. (26); 

end 
if Xi is a hen then 

Update Xi’s location using Eq. (28); 
end 
if Xi is a chick then 

Update Xi’s location using Eq. (31); 
end 
Evaluate the new solution using equation 34; 
If the new solution is better than its previous 
one, update it; 

end 
end 

Fig. 2. The semi-code of CSO optimization algorithm 

5. Simulation and Results  

A microgrid usually encompasses a set of distributed 
generation resources, energy storage utility, and the loads 
which can be operated as an active distribution network in 
two modes of islanding or connected to the upstream grid. 
The development of the microgrids is a subcategory of smart 
grid concept. The microgrid and smart grid concepts have 
both almost the same prime goals which are reduction in 
energy production costs, improvement in reliability state, and 
mounting the security of the system. Some advantages such 
as the development of green clean energy technologies in the 
distribution level and use of DRPs in the microgrids depends 
highly on the smart grid infrastructure. As can be seen in Fig. 
3, the considered microgrid in this study consists of three 
load types of residential, commercial, and industrial. The 
generation power provider consists of MTs, wind turbines, 
solar cells, and battery. The considered microgrid is 
supposed to be capable to exchange power with the upstream 
grid. The characteristics of the installed generation resources 
are expressed in Table 1 as follows: 
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 Fig. 3. The configuration of the considered microgrid 

The designed location for implementation of the 
proposed grid-connected microgrid scheme is Sejzi town, 
which is located near the Isfahan city, Iran. 

 



INTERNATIONAL	JOURNAL	of	RENEWABLE	ENERGY	RESEARCH		
Mobarakeh	P.G.	and	Moradian	M.,	Vol.9,	No.1,	March,	2019	

	 221	

Table 1. The characteristics and emission factors relevant to the microgrid 

Unit NOx 
(kg/MWh) 

SO2 
(kg/MWh) 

CO2 
(kg/MWh) 

Offer 
($/kWh) 

SUC & 
SDC ($) Pmax (kW) Pmin (kW) 

MT 0.23 0.0054 720 0.148 1.1227 200 30 
WT 0 0 0 0.419 0 25 0 
PV 0 0 0 1.017 0 50 0 

Battery 0.001 0.0002 10 0.138 0 45 -45 
Grid 2.1 0.5 950 - 0 500 -500 

 

The town is about 35 km away from the center of Isfahan 
and in longitude ranges from 52°, 7´ E, the latitude ranges 
from 32° 42’ N, and 1542 meters above the sea level. The 
plots of the Figs. 4 and 5 illustrate the power generated by 
wind turbines and photovoltaic cells as well as the total 
demand of the microgrid for each hour, respectively. The 
loads’ types are residential, commercial and industrial. Hence 
the load curve of each type of consumption is depicted in Fig. 
6 separately. The hourly price of electricity is considered as 
Fig. 7. 

 
Fig. 4. The generation of the wind turbine and solar unit 

 
Fig. 5. The hourly load profile 

 
Fig. 6. The demand for various types of consumption 

The purpose of this study is to maintain an optimized 
schedule with respect to the coordinated operation of 
microgrid’s uncertain generation resources with energy 
storage facility. The objective of this scheme is to minimize 
the operational cost of the operation along with mitigation of 
emission. 

 
Fig. 7. The plot of the market clearing price 

In addition, the impact of deployment of an incentive-
based DRP is taken into account. In order to evaluate the 
effectiveness of the proposed scheme, three scenarios are 
defined as follows: 

• Scenario 1: The microgrid is supplied completely 
from the upstream grid 

• Scenario 2: The coordinated operation of distributed 
generation resources, storage units, and the grid 
subject to minimize operation and emission costs 
(Regardless of responsive loads) 

• Scenario 3: The coordinated operation of distributed 
generation resources, storage units, and the grid 
subject to minimize operation and emission costs 
(with respect to the demand response resources) 

5.1. Scenario 1  
In this scenario, the whole demand of the microgrid is 

satisfied through the upstream grid. The total operation cost 
of the microgrid for a 24-hour period is obtained to be 
$741.974. This cost comprised of $611.470 due to purchasing 
electricity from the upstream grid and $130.504 due to 
emission cost. The results show that the air contaminants of 
CO2 by 3865.882 kg, SO2 by 2.035 kg, and NOx by 8.546 kg 
are produced over the timeframe of this study. Fig. 8 
demonstrates the electricity price for the loads in scenario 1.  

 
Fig. 8. The hourly price of electricity in scenario 1 
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5.2. Scenario 2  
In the second scenario, the internal generation resources 

(as virtual power plants) and a storage unit are integrated into 
the operation model to meet the loads. Basically, in a 
restructured power system with a highly competitive and 
liquid environment, the system operator does not buy the 
excess generation of uncertain renewable resources and the 
surplus generation must be curtailed. However, in some 
restructured power systems with supporting policies for 
renewable generation, the trade criteria is a little different that 
facilitate more penetration of uncertain generation. After the 
emergence of microgrids and the advent of interconnected 
active distribution networks, it is suggested to dedicate some 
supporting policies for small-scale demand-side VPPs. Thus, 
in this study, the presumption is that the renewable resources 
can deliver their excess generated power to the main grid 
when the price of renewable generation is lower than the grid’ 
price. In order to support renewable energy sources, the grid 
price will be paid to them when their bids are lower than the 
grid’s price. On the contrary, when the price of electricity of 
microsources is higher than grid’s price, the excess generation 
must be dedicated to the internal loads of the microgrid and 
the MT must balance the surplus generation and demand. 
Various generation resources can exist in a microgrid which 
requires proper scheduling in order to exploit more free green 
energy and avoid incurring unwanted costs. The commitment 
and dispatch schedule of microgrid resources are provided in 
Fig. 9. With respect to the objective function, the wind and 
solar units have the participation of 343.91 kW and 286.85 
kW. Hence, the wind and solar unit earn $69.81 and $115.31 
revenue from the sale of energy. The micro-turbine has 
generated 2023.45 kW which implies the maximum 
commitment among the generating units. The amount of 
generation is comprised of 1718.63 kW for the satisfaction of 
microgrid’s loads and 304.82 kW that is sold to the main grid 
at peak hours. Hence, the revenue of $299.47 can be achieved 
by MT unit. The revenue of $66.04 is obtained for the MT 
unit from sell of energy to the main grid. The upstream grid 
has played also a prominent role in the satisfaction of demand 
by providing 1720.01 kW of electrical power which creates 
the revenue of $207.16. Fig. 10 depicts the sold and 
purchased electricity from the grid in various hours of study. 
As can be noticed from Fig. 8, the price of electricity sold to 
the grid at peak hours is higher than grid’s electricity price. 
But at the rest of hours, the price of sold power is lower than 
grid’s price. 

 
Fig. 9. The commitment and dispatch schedule of microgrid 

for distributed generation sources, storage unit, and grid 
(scenario 2) 

 
Fig. 10. The hourly sold and purchased power from the 

upstream grid (Scenario 2) 

As can be seen in Fig. 10, the operator has decided to 
maintain the required energy of the microgrid by MT unit 
because the grid’s price is higher than the generation price of 
MT, as figured out in Fig. 7. In addition, the excess capable 
generation of MT can be sold to the main grid, vice versa. 
The batteries function as storage units in the microgrid. Fig. 
11 illustrates the time and amount of charge/discharge of 
batteries for operation schedule of batteries. As it is obvious, 
at the periods of 1-4 and 23-24, when the grid’s electricity 
price is alleviated (compared with the selling price of 
batteries), the storage unit is planned to store 39.32 kW of 
power. At hours 13 and 15-22, when the price of electricity is 
increased in the grid, the operator of the microgrid has is 
inclined to discharge the batteries and to sell the stored 
electricity in the storage unit. During the entire time horizon, 
the battery has paid $4.04 to the grid for charging states and 
has earned the revenue of $5.43 from the sale of maximum 
capability of generation of stored energy. Thus, the Battery 
unit has profited by $1.38 over the course of this study. 

 
Fig. 11. The hourly charging and discharge schedule of 

battery unit (Scenario 2) 

In this scenario, the total cost of demand provision is 
determined to be $714.56, which shows a reduction in 
comparison with the first scenario. The cost is composed of 
$627.09 corresponded with the generation cost of 
microsources and the costs of purchasing power from the 
main grid and $87.46 relevant to the detriments that must be 
paid due to emission. As can be noticed, due to the higher 
price of renewable resources (expected by the renewable 
owners because of higher capital costs) in comparison with 
grid’s prices, the provision cost of demand by non-renewable 
resources is mounted in comparison with the first scenario. 
During hours 15-22, when the price of the grid is increased, 
the presence of wind, solar and MT units has resulted in 
mitigation of electricity price in comparison with supplying 
through the main grid. The presence of renewable and MT 
units has caused a significant emission reduction compared 
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with scenario 1 (2871 kg of CO2, 0.869 kg of SO2, and 4.007 
kg of NOx). The total cost of operation is decreased in 
comparison with the first scenario because of the role of 
renewable and MT units in emission reduction. 

 
Fig. 12. The hourly price of electricity in scenario 2 

5.3. Scenario 3 
In this scenario, the scheduling is conducted while the 

implication of responsive loads is taken into account. The 
suggested voluntary packages for consumption reduction are 
in accordance with Table 2. The presumption of this study is 
that 40% of the total load would like to participate in the 
DRP. The execution of DRPs helps the operator to have 
more flexibility and maneuverability at peak hours. Fig. 13 
depicts microgrid’s load curve before and after the 
implementation of DRPs. 

Table 2. The suggested DRP based on price per reduction 

Off-
peak 

Reduction 
(kW) 0-10 10-20 20-100 100-140 

Price 
($/kWh) 0.0102 0.0216 0.0289 0.0401 

peak 

Reduction 
(kW) 0-10 10-20 20-100 100-140 

Price 
($/kWh) 0.0151 0.0325 0.0435 0.0657 

By implementation of DRP in the 3rd scenario, the total 
consumption of the microgrid has mitigated from 4069.35 kW 
to 3380.35 kW. The commitment and dispatch schedule of 
generating units, storage unit, and power exchange with the 
main grid in alignment with scenario 3 is figured out in Fig 
14. In this scenario, the micro-turbine unit has the 
participation of 2023.45 kW which shows a slight increase in 
generation. This amount is comprised of 1155.78 kW to 
satisfy internal loads of the microgrid and 907.61 kW that is 
sold to the main grid at peak. The former has provided the 
revenue of $171.05 and the latter has procured $187.62. 
These amounts indicate the total revenue of $358.67.  It is 
clear that in the third scenario the MT unit is more inclined to 
sell energy to the grid as VPP. In the 3rd scenario, the bought 
power from the upstream grid is diminished to 1593.83 kW 
and the revenue of the grid from the source of sell of power to 
the microgrid is mitigated to $191.84. Fig. 15 demonstrates 
the amount of energy sold or bought to or from the main grid. 
As can be noticed from Figs. 14-16, the tendency of 
consumers to participate in DRP is increased within the 
interval of 15-20 (particularly, within 18-20). 

 
Fig. 13. The microgrid’s load curve, before and after the 

execution of DRP 

Hence, with respect to the DRP as well as the price 
discrepancies between instantaneous grid’s prices and MT’s 
Prices between 15 and 20, the microgrid’s operator has tried 
to dedicate the maximum capacity of MT to sell energy to the 
main grid. Thus, the revenue and profit of MT unit are 
mounted compared with the 2nd scenario. The battery storage 
has virtually the same performance as the 2nd scenario. 
However, this unit has gained more profit because the 
batteries were able to sell more power to the main grid at 
peaks.  

 
Fig. 14. The commitment and dispatch schedule of microgrid 

for distributed generation sources, storage unit, and grid 
(scenario 3) 

 
Fig. 15. The hourly sold and purchased power from the 

upstream grid (Scenario 3) 

 
Fig. 16. The hourly cost of demand provision in scenario 3 
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In this respect, the battery unit has paid $4.06 for buying 
power from the grid and has received the revenue of $7.79 
for selling the stored power to the grid which implies the 
profit of $3.73 over the course of study. In this scenario, the 
total operation cost of the microgrid within the timeframe of 
study is estimated to be $672.78, which constituted of 
$586.32 for the satisfaction of the microgrid’s loads and 
$86.46 for the cost pertaining to emission detriment. The 
operation cost of the microgrid is correlated with the cost of 
buy of power from wind, solar, MT, battery, and upstream 
grid along with the cost of incentives that must be paid of 
DRP participants. According to Fig. 16, the final hourly cost 
of electricity for consumers based on scenario 3, which is 
composed of operation cost and emission cost, is alleviated 
compared with the previous two scenarios. 

6. Conclusion 

This study delves into the operation of a grid-connected 
microgrid comprised of wind, solar, micro-turbine generating 
resources which are also called microsources or virtual 
power plants (VPPs). Besides, the battery unit is utilized to 
redress the imbalances caused by renewable microsources. In 
addition, the impact of integration of demand response 
resources was also incorporated in the model. The purpose 
was to arrange an operation schedule for VPPs as a multi-
objective problem subject to minimize the operation cost of 
the microgrid and emission cost. In addition, the profitability 
of the microgrid scheme is investigated based on hourly 
prices of the main grid and the possible power exchange with 
the upstream network. The model is assessed through three 
scenarios, and the results imply that the operation cost of the 
microgrid and emission cost can be effectively alleviated 
when the storage unit collaborates with uncertain 
microsources in the dispatch schedule and demand response 
capacities are enabled at peaks. 
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