A Benchmark of Statistical Models for Forecasting Monthly Direct Normal Irradiation (DNI) for the Region of Ouarzazate Morocco

Ismail Belhaj*‡, Omkaltoume El Fatni*

*Physics Department, Faculty of Sciences Rabat, LPHE-Modelling and Simulations, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco

(ibelhaj13@gmail.com, omfatni@gmail.com)

‡Corresponding Author; Ismail Belhaj, 4 Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco, Tel: +212 671 694 767, ismailbelhaj13@gmail.com

Received: 11.11.2018 Accepted: 21.12.2018

Abstract - Direct Normal Irradiation (DNI) is the main component of solar thermal (ST) systems and concentrated solar power systems (CSP and CPV). The volatility of this component due its renewable resource nature can cause fluctuations that affect the electrical grid, hence the importance of forecasting it. In this work, the forecasting of monthly average Direct Normal Irradiation (DNI) is explored. A benchmark of statistical forecasting models is used to select the best statistical forecasting model. Seventeen models are evaluated and compared, namely Trend models, Box Jenks models and Exponential Smoothing models. The satellite data used are of the period extended from 1994 to 2012 for the region of Ouarzazate in Morocco. The daytime period is from 07h30 till 17h30. The design region of the models is from 1994 to 2009 divided into an estimation period and a validation period. Data from 2010 to 2012 are used as forecasting years. Several error metrics are used for performance evaluation and comparison. The results indicate that a seasonal ARIMA model outperforms the other statistical models with a MPE= -0.490442% in the validation period and MPE= -5.1907% in the forecasting region.

Keywords Forecasting, Time Series, Direct Normal Irradiation (DNI), Smoothing, Solar radiation, Concentrated Solar Power (CSP), Ouarzazate.

1. Introduction

Solar radiation has received much attention in recent years due to its use in harvesting different forms of energy such as electricity and heat. Forecasting Direct Normal Irradiation (DNI) has become very important recently as the DNI is the main component of concentrated solar power (CSP) and concentrated photovoltaic (CPV) systems. The uncertain nature of renewable energy resources such as solar energy produces fluctuations that affect the electrical grid which lead in some cases to blackouts hence the necessity to reduce the cost of imbalance in the grid using forecasting [1-4], which proved to be a better way to increase flexibility in the grid compared to other solutions such as increasing storage capabilities [5], forecasting the energy demand [6, 7] and prediction of electricity energy consumption [8].

Numerous studies were conducted on intra-hourly and hourly DNI forecasting [9-15] useful for operations and load-following, however not many researches were conducted on the benchmark studies of monthly average solar radiation forecasting especially the component of DNI which is important for the task of planning in CSP solar sites. This gap in this particular forecasting time horizon for DNI and its use in the industry make it an interesting subject to tackle.

There is a growing concern on long term solar forecasting in the latest years. A recent research involved long-term GHI forecasting (monthly and seasonal) for regional sites in Queensland, Australia where 3 methods were compared, namely artificial neural networks (ANN), multiple linear regression (MLR) and ARIMA [16]. The results showed that the ANN outperformed the other
methods in monthly and seasonal forecasting with an overall average RMSE=1.23MJ m\(^{-2}\) day\(^{-1}\). Another study revealed the results of the investigation on models for forecasting monthly mean daily solar radiation from in-situ measurements in the tropical climate of India [17]. The results showed that Hargreaves and Samani model (HSM) performed satisfactory both on Hyderabad and Vishakhapatnam regions with a mean percentage error MPE=-5.39% and -20.24% respectively. Long term DNI forecasting, in this case using monthly average data, is very important in planning, management and decision making for engineers, policy makers and energy experts for cases such as load pricing and energy management in areas where solar thermal plants are installed or intended for implantation. That being said, the choice of a reliable predictive model is crucial for making the best forecasts hence the importance of conducting a study of benchmarking forecasting models for electricity balancing market prices [18] or the renewable resource itself, in this case DNI, which is subject of this manuscript.

The purpose of the present work is to investigate a time series based benchmark of forecasting methods on monthly average DNI using satellite data. The Moroccan region of Ouarzazate in the South West Mediterranean basin area is the case study due to the availability of data and the importance of this region in the Moroccan Solar Plan (MSP), Africa and the Mediterranean region as it shelters Africa’s biggest solar plant “NOOR” and the closest one to Spain which can be later considered for energy exportation. Data considered lay from the period 1994 to 2012 using 07h30 to 17h30 daytime hours. Several metric measures were performed, such as the Akaike Information Criterion (AIC) and root mean squared error (RMSE), to assess the forecasting skills and select the best predictive model among the seventeen models being tested. The rest of the paper is organized as follows: section 2 presents the data pre-processing procedures; Section 3 describes the proposed methods tested for forecasting while section 4 reveals the findings in details. Finally, section 5 reports the conclusions made and discusses the results with an insight of the next future coming works.

Nomenclature

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>AR</td>
<td>Autoregressive</td>
</tr>
<tr>
<td>ARMA</td>
<td>Autoregressive moving average</td>
</tr>
<tr>
<td>ARIMA</td>
<td>Autoregressive integrated moving average</td>
</tr>
<tr>
<td>MA</td>
<td>Moving average</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute error</td>
</tr>
<tr>
<td>MAPE</td>
<td>Mean absolute percentage error</td>
</tr>
<tr>
<td>ME</td>
<td>Mean error</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPE</td>
<td>Mean percentage error</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean square error</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean squared error</td>
</tr>
<tr>
<td>SARIMA</td>
<td>Seasonal autoregressive integrated moving average</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>A smoothing constant used to estimate the level</td>
</tr>
<tr>
<td>(\beta)</td>
<td>A smoothing constant used to estimate the slope</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>A smoothing constant used to estimate the seasonality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_i)</td>
<td>White noise</td>
</tr>
<tr>
<td>(\varepsilon_{i-j})</td>
<td>Lagged errors used as predictors in the MA((q)) and ARMA((p,q)) models</td>
</tr>
<tr>
<td>(q_i)</td>
<td>Coefficients of the lagged observations in the AR((p)) and ARMA((p,q)) models</td>
</tr>
<tr>
<td>(\theta_j)</td>
<td>Coefficients of the lagged errors in the MA((q)) and ARMA((p,q)) models</td>
</tr>
</tbody>
</table>

Roman symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B)</td>
<td>Lag operator also called the “Backshift”</td>
</tr>
<tr>
<td>(C)</td>
<td>Constant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{a}, \hat{b}, \hat{c})</td>
<td>Estimates of the parameters (a, b, c) of the trend models using the OLS method</td>
</tr>
<tr>
<td>(d)</td>
<td>Order of the non-seasonal differencing</td>
</tr>
<tr>
<td>(D)</td>
<td>Order of the seasonal differencing</td>
</tr>
<tr>
<td>(F_t(k))</td>
<td>The forecast for the horizon (t + k) at time (t)</td>
</tr>
<tr>
<td>(I_t)</td>
<td>The seasonal estimate of (Y_t)</td>
</tr>
<tr>
<td>(k)</td>
<td>The forecast horizon or the number of steps in the future</td>
</tr>
<tr>
<td>(L)</td>
<td>Likelihood of the data</td>
</tr>
</tbody>
</table>
data were pre-processed by excluding the 29th February day from each year to avoid the leap years and homogenize the data. The monthly average DNI data were then computed and divided into two regions (partitions): The design region where the model is trained, tested and validated; in this case the design period is from 1994 to 2009 divided into an estimation period from January 1994 to February 2005 which constitutes 70% of the data used in the design period, and a validation period from March 2005 to December 2009 which constitutes 30% of the data; and the forecast region where the model is used to generate forecasts blindly, which is chosen to be three years from January 2010 to December 2012.

3. Methods

The present work focuses on benchmarking several statistical forecasting models using monthly average DNI time series. In this section, three main branches of models are introduced, namely Trend models, Box-Jenkins models (ARMA and ARIMA models) and exponential smoothing models.

3.1. Trend Models

Trend models assume that future forecasts are fitting various types of regression models based only on time as an independent variable with random fluctuations. Trend models weight all data equally and are fit by least squares, resulting in estimates of up to 3 coefficients a, b and c denoted \(\hat{a} \), \(\hat{b} \) and \(\hat{c} \) respectively. In this work, The Mean, Linear Trend, Quadratic Trend, Exponential Trend, and S-Curve models are explored.

Mean Model: \(F_t(k) = \bar{Y} \)
Linear Trend: \(F_t(k) = \hat{a} + \hat{b}(t + k) \)
Quadratic Trend: \(F_t(k) = \hat{a} + \hat{b}(t + k) + \hat{c}(t + k)^2 \)
Exponential Trend: \(F_t(k) = \exp(\hat{a} + \hat{b}(t + k)) \)
S-Curve: \(F_t(k) = \exp(\hat{a} + \hat{b}/(t + k)) \)

In the five models, \(F_t(k) \) denotes the forecast for time \(t+k \) at time \(t \).

3.2. ARMA Models

ARMA (ARMA) is a group of models that handle stationary time series. The ARMA models are namely:

- The Autoregressive model (AR)
- The Moving Average model (MA)
- The Autoregressive Moving Average model (ARMA)
The **AR(p)** model:

The (AR) model is a multiple regression model with lagged observations as predictor variables:

\[y_t = C + \sum_{i=1}^{p} \phi_i y_{t-i} + \varepsilon_t \]

(6)

\(\varepsilon_t \) is a white noise, \(\phi_i \) are the coefficients of the lagged observations, \(C \) is a constant and \(p \) is the autoregressive order.

The **MA(q)** model:

The (MA) model is a multiple regression model with lagged errors as predictors:

\[y_t = C + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} + \varepsilon_t = C + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t \]

(7)

\(\varepsilon_t \) is a white noise, \(\theta_j \) are the coefficients of the lagged errors, \(C \) is a constant and \(q \) is the moving average order.

The **ARMA(p,q)** model:

The (ARMA) model is a multiple regression model that combines both lagged observations with lagged errors as predictors:

\[y_t = C + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} + \varepsilon_t = C + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t \]

(8)

3.3. ARIMA models

In general, two types of ARIMA models can be distinguished:

- Nonseasonal ARIMA models
- Seasonal ARIMA models

3.3.1. Nonseasonal ARIMA models

The (ARIMA) models, also known as Box-Jenkins models, are time series models. They are the generalized form of ARMA models that take into consideration stationary and non-stationary data by adding a differencing parameter. The ARIMA models can be written as ARIMA\((p,d,q)\) where \(p \) is the autoregressive (AR) order which is the number of lags, \(d \) the degree of first differencing involved and \(q \) the moving average (MA) order.

The general equation of an ARIMA model is given by:

\[\left(1 - \sum_{i=1}^{p} \phi_i B^i \right) \left(1 - B \right)^d y_t = \left(1 + \sum_{i=1}^{q} \theta_i B^i \right) \varepsilon_t \]

(9)

\(B \) is the lag operator called the “backshift” operator such that \(B^i y_t = y_{t-i} \). In special situations, where \(p, d, q \) is equal to zero the following cases arise:

- **Case 1:** when \(d=0 \) the ARIMA model turns into an AR\((p,q)\) model
- **Case 2:** when \(d=0 \) and \(q=0 \) the ARIMA model is reduced to AR\((p)\) model
- **Case 3:** when \(d=0 \) and \(p=0 \) the ARIMA model is reduced to MA\((q)\) model

For further readings about the ARIMA models, the references [19-22] are suggested.

3.3.2. Seasonal ARIMA models (SARIMA)

The seasonal ARIMA models, also called Multiplicative ARIMA models are ARIMA models with components of seasonality variables (SAR, SMA and the differencing of seasonality). The multiplicative Seasonal ARIMA (SARIMA) model is denoted by ARIMA\((p,d,q)\), \((P,D,Q)\), where \(s \) is the number of seasons, \(p \) is the order of the non-seasonal autoregressive term, \(d \) is the order of non-seasonal differencing term, \(q \) is the order of the non-seasonal moving average term, \(P \) is the order of the seasonal autoregressive term (SAR), \(D \) is the order of seasonal differencing and \(Q \) is the order of the seasonal moving average term (SMA). The SARIMA model is described with following equation [23]:

\[\phi_p(B) \Phi_P(B^s) (1-B)^d (1-B^s)^D y_t = \theta_q(B) \Theta_Q(B^s) \varepsilon_t \]

(10)

\(B \) is the lag operator, \(\varepsilon_t \) are the residuals, \(\phi_p(B) = 1 - \sum_{i=1}^{p} \phi_i B^i \) is a polynomial in \(B \) of degree \(p \), \(\theta_q(B) = 1 - \sum_{i=1}^{q} \theta_i B^i \) is a polynomial in \(B \) of degree \(q \), \(\Phi_P(B^s) = 1 - \sum_{i=1}^{P} \Phi_i B^i \) is a polynomial in \(B^s \) of degree \(P \), and \(\Theta_Q(B^s) = 1 - \sum_{i=1}^{Q} \Theta_i B^i \) is a polynomial in \(B^s \) of degree \(Q \). It is worth mentioning that seasonal differencing \(\Delta_y_t = (1-B^s)y_t = y_t - y_{t-s} \) removes seasonality in the same way that ordinary differencing \(\Delta y_t = y_t - y_{t-1} \) removes a polynomial trend.

3.4. Exponential Smoothing models

Smoothing is a technique based on averaging over multiple periods in order to minimize the noise using an exponential function [24-25]. The use of the exponential functions is intended to assign weight exponentially to the corresponding observations in a decreasing order. The different smoothing models are called “smoothers”. To generate the forecasts, up to three passes of an exponential smoother are made:

Pass 1

\[s'_t = \alpha y_t + (1-\alpha)s'_{t-1} \]

\(\alpha \) is the smoothing constant such that \(0<\alpha<1 \) and \(s'_t \) is the singly smoothed series obtained by applying simple exponential smoothing to series \(Y \) at time \(t \).

Pass 2

\[s''_t = \alpha s'_t + (1-\alpha)s''_{t-1} \]
3.4.4. Holt’s linear exponential smoothing

Holt’s Linear Exponential smoothing is similar to Brown’s Linear Exponential Smoothing in that it generates forecasts that follow a linear trend. However, Holt’s procedure uses smoothing constants \(\alpha \) (alpha) and \(\beta \) (beta), one to estimate the level of the series at time \(t \) and a second to estimate the slope [29]. The procedure is as follows:

- Smooth the data to estimate the level using
 \[
 S_t = \alpha Y_t + (1-\alpha)(S_{t-1} + T_{t-1})
 \]
 \(\alpha \) is the estimate of the local level and \(T_t \) is the estimate of the local trend.

- Smooth the first smooth to estimate the slope using
 \[
 T_t = \beta(S_t - S_{t-1}) + (1-\beta)T_{t-1}
 \]

- Calculate the forecasts using
 \[
 F_t(k) = S_t + kT_t
 \]

3.4.5. Winter’s exponential smoothing

All of the forecasting methods described above handle the seasonality by first seasonally adjusting the data, then applying the forecasting model, and then putting back the seasonality. Winter’s exponential Smoothing procedure handles the seasonality directly by estimating seasonality at the same time that it estimates the level and trend. In extends Holt’s procedure by adding an additional parameter gamma \(\gamma \) to use in a third smoother [30]. The procedure is as follows:

- Estimate the seasonality by smoothing the ratio of the data to the estimated level at time \(t \) using
 \[
 I_t = \gamma \frac{Y_t}{S_t} + (1-\gamma)I_{t-s}
 \]
 \(I_t \) is the seasonal estimate of \(Y_t \)

- Estimate the level of the series by smoothing the data divide by the estimated seasonality using
 \[
 S_t = \alpha \frac{Y_t}{I_{t-s}} + (1-\alpha)(S_{t-1} + T_{t-1})
 \]

- Estimate the slope of the series using
 \[
 T_t = \beta(S_{t-1} + T_{t-1}) + (1-\beta)T_{t-1}
 \]

- Calculate the forecasts using
 \[
 F_t(k) = (S_t + kT_t)I_{t-s+k}
 \]

Here \(S_t + kT_t \) is the extrapolation of level and trend from period \(t \) and \(I_{t-s+k} \) is the most recent estimate of the seasonal index for \(k \)th period in the future. It is worth mentioning that in all the exponential smoothing techniques used, the parameters \(\alpha \), \(\beta \) and \(\gamma \) are heuristic parameters between 0 and 1 both excluded.

The metrics used to assess the accuracy of the forecasting methods are the (RMSE), (ME), (MPE), (MAE), (MAPE) and (AIC).

\[\text{The Root Mean Squared Error (RMSE)} \]

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_i^2}
\]

The RMSE is a measure of average squared deviation of forecasted values which penalizes large individual errors occurred during the forecasting. Here, \(e_i \) is the error at a time \(t \) compute by subtracting the forecasted values from the actual data and \(n \) is the number of samples.

\[\text{The Mean Error (ME)} \]

\[
\text{ME} = \frac{1}{n} \sum_{i=1}^{n} e_i
\]
The Mean Percentage Error (MPE)

\[
MPE = \frac{1}{n} \sum_{t=1}^{n} \left(\frac{e_t}{y_t} \right) \times 100
\]

The MPE is a measure of overall bias error or systematic error. It is used as a percentage error.

The Mean Absolute Error (MAE)

\[
MAE = \frac{1}{n} \sum_{t=1}^{n} |e_t|
\]

The MAE shows the magnitude of overall error, occurred due to forecasting. It does not penalize extreme forecast errors.

The Mean Absolute Percentage Error (MAPE)

\[
MAPE = \frac{1}{n} \sum_{t=1}^{n} \left(\frac{e_t}{y_t} \right) \times 100
\]

The MAPE represents the percentage of average absolute error occurred. Here, \(n \) is the number of observations, \(e_t \) is the error at a time \(t \) compute by subtracting the forecasted values from the actual data and \(y_t \) are the actual data at time \(t \). Each of the RMSE, MAE, MAPE, ME and MPE, is based on the one-ahead forecast errors, which are the differences between the data value at time \(t \) and the forecast of that value made at time \(t-1 \). The first three statistics measure magnitude of the errors while the last two statistics measure bias. A better model will give a small value. Details about the importance of use of these metrics can be found in [31].

The Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is a criterion formulated by the Japanese Statistician Hirotugu Akaike in the early 1970s [32]. AIC is an information criterion used for model selection described by the following equation:

\[
AIC = -2 \log(L) + 2(p + q + k)
\]

\(L \) is the likelihood of the data, \(p \) is the autoregressive order and \(q \) is moving average order and \(k \) represents the intercept of the ARIMA model. For a model to be selected, it has to be the one with the lowest AIC. AIC discourages overfitting and rewards goodness of fit using the likelihood function \(L \).

4. Results and Discussion

In this section, the results are presented and discussed. In the present work, the MSE is used as a minimization function to select the forecasting model. Models with and without constant were tested. Table 1 presents the optimized best models found after test.

Table 1. The different 17 predictive models found after test

<table>
<thead>
<tr>
<th>No of Models</th>
<th>Models found after test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1)</td>
<td>Random walk</td>
</tr>
<tr>
<td>(M2)</td>
<td>Random walk with drift = 0.0226256</td>
</tr>
<tr>
<td>(M3)</td>
<td>Constant mean = 605.114</td>
</tr>
<tr>
<td>(M4)</td>
<td>Linear trend = 602.979 + 0.03164 t</td>
</tr>
<tr>
<td>(M5)</td>
<td>Quadratic trend = 585.098 + 0.820477 t + 0.00584323 t^2</td>
</tr>
<tr>
<td>(M6)</td>
<td>Exponential trend = exp(6.39709 + 0.0000495657 t)</td>
</tr>
<tr>
<td>(M7)</td>
<td>S-curve trend = exp(6.40309 + 0.0648205 /t)</td>
</tr>
<tr>
<td>(M8)</td>
<td>Simple moving average of 2 terms</td>
</tr>
<tr>
<td>(M9)</td>
<td>Simple exponential smoothing with alpha = 0.0083</td>
</tr>
<tr>
<td>(M10)</td>
<td>Brown's linear exp. smoothing with alpha = 0.0031</td>
</tr>
<tr>
<td>(M11)</td>
<td>Holt's linear exp. smoothing with alpha = 0.2372 and beta = 0.0188</td>
</tr>
<tr>
<td>(M12)</td>
<td>Brown's quadratic exp. smoothing with alpha = 0.0065</td>
</tr>
<tr>
<td>(M13)</td>
<td>Winter's exp. smoothing with alpha = 0.2222, beta = 0.0219, gamma = 0.1083</td>
</tr>
<tr>
<td>(M14)</td>
<td>ARIMA(1,0,0)x(2,0,1)12 with constant</td>
</tr>
<tr>
<td>(M15)</td>
<td>ARIMA(0,0,1)x(2,0,2)12 with constant</td>
</tr>
<tr>
<td>(M16)</td>
<td>ARIMA(2,1,1)x(2,0,2)12</td>
</tr>
<tr>
<td>(M17)</td>
<td>ARIMA(2,0,0)x(2,0,1)12 with constant</td>
</tr>
</tbody>
</table>

Fig. 1. Results of the 17 models’ performance in the estimation period.
In this case, the models were estimated from the first 134 data values and the last 58 data values were withheld for validation. Figure 1 and Figure 2 reveals the results of the models found based on their performance at the estimation and validation periods respectively.

![Results of the 17 models’ performance in the validation period](image)

Fig. 2. Results of the 17 models’ performance in the validation period.

The selection of the best model is based on all the performance metrics with a focus on the RMSE and MPE to measure the magnitude of the errors and the error bias respectively. AIC is also used to rank the models based on their quality. In the estimation period, the model with the lowest value of the RMSE, MPE and AIC (with RMSE=58.4456, MPE=-0.945163 and AIC=8.2082) is model M14 which is a mixed seasonal autoregressive integrated moving average model \(ARIMA(1,0,0) \times (2,0,1)_{12}\) with constant. This model assumes that the best forecast for future data is given by a parametric model relating the most recent data value to previous noise.

While comparing the out-of-sample error statistics (validation period) to the in-sample statistics (estimation period), the noticeable rise of error and the change of performance of some models suggests the presence of non-randomness in the residuals. For this reason, five diagnostic tests for residual randomness and stationarity were performed namely, the test for excessive runs up and down (RUNS), the test for excessive runs above and below median (RUNM), Box-Pierce test for excessive autocorrelation (AUTO), the test for difference in mean 1\(^{st}\) half to 2\(^{nd}\) half (MEAN) and the test for difference in variance 1\(^{st}\) half to 2\(^{nd}\) half (VAR). Table 2 represents the results of the five tests.

Table 2. Table of the five diagnostic tests

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>RUNS</th>
<th>RUNM</th>
<th>AUTO</th>
<th>MEAN</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M1)</td>
<td>75.5007</td>
<td>OK</td>
<td>***</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M2)</td>
<td>75.8121</td>
<td>OK</td>
<td>***</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M3)</td>
<td>62.4089</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M4)</td>
<td>62.5942</td>
<td>OK</td>
<td>***</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M5)</td>
<td>62.4422</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M6)</td>
<td>62.6673</td>
<td>OK</td>
<td>***</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>(M7)</td>
<td>62.5437</td>
<td>OK</td>
<td>***</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

In the diagnostic tests for residual randomness and stationarity tests, ideally an OK or * symbol, indicate none statistically significant violations of model assumptions. If many flags appear (** or *** symbols) meaning significant (p-value between 0.001 and 0.01) or highly significant (with a p-value less or equal to 0.001) probability of non-randomness in the residual plots. The p-value is the probability used in testing a null hypothesis to either reject it or failing doing that (the term “accepting” a hypothesis does not exist in statistics as the logic is that not enough evidence is found to reject that hypothesis) In general, the smaller and more random are the errors, the better. From Table 2, the model that passed all the tests and respected the models assumptions with the lowest error is the model M14, which is

\[ARIMA(1,0,0) \times (2,0,1)_{12}\] with constant.

Figure 3 shows the time sequence of the data used which cover 192 time periods with a monthly seasonality \((s=12)\) and how it is explained by the fitting model. It can be clearly seen that the fitting model passes through most of the points of the actual data with some exceptions in the first four years.

![Time Sequence Plot for DNI (Wh/m²) using the fitting model ARIMA(1,0,0) \times (2,0,1)_{12}\ with constant](image)

Fig. 3. Time sequence plot for DNI (Wh/m²) using the fitting model ARIMA(1,0,0) \times (2,0,1)_{12}\ with constant.

Figure 4 presents the forecasts generated for the years 2010, 2011 and 2012 with their 95% confidence interval.

It shows the plot of the forecasted values generated from the selected model versus the actual DNI data. The plot shows a very good following seasonal behaviour from the model and describes in a very good manner the dynamic within the data with differences in the peaks representing the errors.
Table 3 presents the summary of the model found. It is worth mentioning that each value of DNI was adjusted using a multiplicative seasonal adjustment before the model was fit. Terms with p-values less 0.05 are statistically significantly different from zero at the 95.0% confidence level. The p-value for the constant term, AR(1), MA(2), and SMA(1) terms is less than 0.05, so they are significantly different from 0. The estimated standard deviation of the input white noise equals 59,294. For more details about the time series analysis, see Box, Jenkins and Reinsel (1994) [33].

Table 3. SARIMA Model Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>T</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.278525</td>
<td>0.0860106</td>
<td>3.23826</td>
<td>0.001529</td>
</tr>
<tr>
<td>SAR(1)</td>
<td>0.898977</td>
<td>0.107209</td>
<td>8.35293</td>
<td>0.000000</td>
</tr>
<tr>
<td>SAR(2)</td>
<td>0.189864</td>
<td>0.09973</td>
<td>1.90378</td>
<td>0.059166</td>
</tr>
<tr>
<td>SMA(1)</td>
<td>0.985683</td>
<td>0.0720349</td>
<td>13.6834</td>
<td>0.000000</td>
</tr>
<tr>
<td>Mean</td>
<td>603.211</td>
<td>18.1462</td>
<td>33.2417</td>
<td>0.000000</td>
</tr>
<tr>
<td>Constant</td>
<td>-38,6639</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Plot Forecasted versus Actual DNI in (Wh/m²) in the period (estimation and validation) and the forecast period (2010-2012).

Fig. 5. Residual Autocorrelations for adjusted ARIMA(1,0,0) (2,0,1)12 with constant.

It is also useful to examine the autocorrelations of the residuals. The residual autocorrelation at lag \(k\) measures the strength of the correlation between residuals \(k\) time periods apart. The residual lag \(k\) autocorrelation is calculated from

\[
\sum_{i=1}^{n} (e_i - \bar{e})(e_{i+k} - \bar{e}) \\
\sum (e_i - \bar{e})^2
\]

where \(n\) is the sample size and \(e_i\) is one period ahead forecasting errors calculated from subtracting the forecast from the observed data value (i.e. \(e_i = Y_i - \hat{Y}_i(l)\)). If a model describes all of the dynamic structure in a time series, then the residuals should be random and all of their autocorrelations should be insignificant. Bars extending beyond the upper or lower limit correspond to statistically significant autocorrelations. From Figure 5 it can be seen that almost no bars appear to be extending from the confidence interval which suggests that the model explains well the dynamic structure in the data. Table 4 presents the results of the model performance in the forecast period where it can be noticed that an increase in all the error metrics has occurred which is normal since most of the times the forecasting models do not perform well in the forecast period yet a MSE of -5,1907% and a RMSE equal to 115,8791Wh/m² still represent an acceptable forecasting accuracy of DNI monthly average data.

Table 4. Table of error metrics for the forecast period

<table>
<thead>
<tr>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
<th>MAPE</th>
<th>ME</th>
<th>MPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIMA(1,0,0)x(2,0,1)12</td>
<td>115,8791</td>
<td>95,7763</td>
<td>16,9438</td>
<td>-22,2736</td>
<td>-5,1907</td>
</tr>
</tbody>
</table>

5. Conclusion

The aim of this study is to forecast monthly average DNI using the different statistical methods to assess their forecasting accuracy. The results show the performance evaluation of different models for long term forecasting horizon of (DNI) in the region of Ouarzazate. The ARIMA(1,0,0)x(2,0,1)12 with constant was selected after assessment, evaluation and comparison with seventeen other models. The selected seasonal model was used to generate 36 time period forecasts representing the three years (2010, 2011 and 2012) use for forecasting. The model proved to
generate forecasts with a good accuracy represented by MPE= -0.9452% in the estimation period, MPE= -0.4904% in the validation period and MPE= -5.1907% in the forecast region. Although the model reveals a difficulty in including most of the outliers which is penalized by the marginalization of the RMSE, it captures very well the seasonality present in the data. Future works will involve using artificial intelligence methods such as neural networks [34-38] and classification techniques to test their data driven concept for better forecasting skills.

References

[26] https://people.duke.edu/~rmau/411avg.htm#SES (Last checked 15th November 2018)

[27] https://people.duke.edu/~rmau/411avg.htm#BrownLES (Last checked 11th November 2018)

[28] cdn2.hubspot.net/hubfs/402067/PDFs/Exponential_Smoothing_Statlet.pdf (Last checked 15th May 2018)

[29] https://people.duke.edu/~rmau/411avg.htm#HoltsLES (Last checked 11th November 2018)

