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Abstract- The main goal of transmission expansion planning (TEP) is to develop or reinforce the electrical network to fulfil 
the future electrical load requirement and to integrate new equipment added to the network. TEP is a major subject in smart 
grid development, where Demand Response Program (DRP) affect long- and short-term power system decisions and these in 
turn, affect TEP. First, this paper discusses the effects of Non-Linear Demand Response Program (NDR) on reducing the final 
costs of a system in TEP. In order to approach real behaviour of the loads, three different types of loads including residual, 
commercial and office-building have been considered. Real data for wind power is extracted from Khaf, Iran. Using Mont-
Carlo and based on Empirical Cumulative Distribution Function (ECDF), 1000 scenarios are produced to study the uncertainty 
characteristic of wind. As there are a lot of scenarios which are time consuming, Radial Based Neural Network Clustering 
(RBNNC) is used for decreasing the run-time significantly. Then TEP problem is solved using the Teaching-Learning-Based 
Optimization (TLBO) and Gray Wolf Optimization (GWO) algorithms in order to minimize the costs of generation, losses, and 
lines. Simulation results show the optimal effect of NDR and wind on postponing the additional cost of investments for 
supplying peak load. 

Keywords Transmission expansion planning, Non-linear demand response program, TLBO, GWO, Wind power, Mont-Carlo, 
Uncertainty. 

 

1. Introduction 

The main goal of transmission expansion planning (TEP) 
is to develop or reinforce the power system to accomplish the 
future electrical load requirement and to integrate new 
equipment added to the network considering stability and 
reliability of the electrical network [1]. 

From mathematical point of view, TEP is a discrete, 
non-linear, and large-scale optimization problem with many 
equality and inequality constraints. TEP studies can be 
divided to three main categories including evolutionary 
techniques [2-7], mathematical techniques [8-10], and meta-
heuristic techniques [11-13]. 

Garver [2], as one of the pioneers in solving TEP 
problems, formulated the TEP as a load distribution problem 
and considered the objective function and the constraints by 

linear functions. Ohmic power losses was neglected by 
Garver and by considering the newly added lines, new linear 
load flow was calculated, and the operation continued until 
no overload found in the system. The other example for 
evolutionary technique is the Lattore’s studies [3] which TEP 
problem was separated into two different problems: the first 
one was investment which solved by an evolutionary 
technique, and the second one was generation which solved 
by a known optimization technique. In another studies of 
evolutionary technique [4-7], sensitivity analysis was used to 
solve TEP problem. In these publications, sensitivity index 
was used to determine the added lines. Different algorithms 
such as minimum depletion, load feeding [4], lowest criteria 
[5], a lighter version of its own mathematical model, or the 
optimal load flow [6] was used to generate sensitivity index. 
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The most famous mathematical technique for TEP 
problem is linear programming where constraints and the 
objective function are linear [8-9]. The linear TEP problem 
was separated into two different problems including 
investment and generation problems, which were defined by 
a linear planning model and Monte Carlo, respectively, based 
on DC load flow. The other mathematical technique for TEP 
problem is nonlinear planning where some constraints and 
the objective function was formulated as nonlinear equations. 
The objective function was considered minimizing the 
investment costs, Ohmic losses and corona. The main 
disadvantage of this technique is that the output result may 
get stuck in the local solution, in other word, initial values of 
load flow has great impact of output results. Pereira’s studies 
[10] is another example for mathematical technique which 
mathematical decomposition was used. 

To use the benefits of evolutionary and mathematical 
techniques, meta-heuristic techniques were used. A parallel 
SA algorithm was implemented by Gallego [11] that 
significantly reduced the computation burden and improved 
quality of the SA solution. A greedy randomization adaptive 
search procedure was proposed by Binato [12]. Maghouli 
[13] presented a multi-stage TEP using a multi-objective 
optimization framework with internal scenario analysis for 
handling uncertainties. 

In recent years, Demand response programs (DRPs) are 
becoming popular because of delaying additional apparatus 
costs for delivering the peak load. It is proved that 
implementing DRPs in TEP problem can be useful [14–18]. 
These programs affect short-term and long-term decision-
making strategies for an electrical network. 

Renewable energy penetration in power system has been 
increased over the recent decades because of the great 
attention to climate change, environmental pollution and so 
on. In this among, wind energy has attracted more attention 
in the world and its usage is increasing [19]. Due to 
intermittent nature of wind farms, some publications are 
focused to investigate the wind power generation on TEP 
problem [20-26]. 

TEP problem considering load management and wind 
power uncertainties is a relatively new research topic which 
is the aim of this paper. In our previous research [27], 
decreasing the total costs of a power system in TEP using the 
linear DRPs has been studied. Then the TEP program 
investigated using TLBO algorithm in order to minimize the 
total costs including costs of power generation, power loss, 
and line construction. In this paper, the effect of a non-linear 
DRP (NDR) on decreasing the total costs of a system in TEP 
has been studied. In order to approach real behaviour of the 
loads, three different types of loads including residual, 
commercial and office-building have been considered. Real 
data for wind power is extracted from Iranian network. Using 
Mont-Carlo and based on Empirical Cumulative Distribution 
Function (ECDF), 1000 scenarios are produced to study the 
uncertainty characteristic of wind. As there are a lot of 
scenarios which are time consuming, Radial Based Neural 
Network Clustering (RBNNC) is used for decreasing the run-
time significantly. Then TEP problem is solved in such a 
way that the costs of generation, losses, and lines to be 

minimized. It is used two different optimization algorithm; 
TLBO and Gray Wolf optimization (GWO) algorithms; to 
find the effectiveness of them. 

The investigations are performed on different scenarios 
including: 

 

1. Without consideration of TEP and DRP: this 
scenario is base; 

2. Without consideration of TEP and consideration of 
DRP: in this scenario the effect of DRP is 
investigated;  

3. TEP without wind: in this scenario the effect of TEP 
is investigated; 

4. TEP with wind: in this scenario the effect of wind is 
investigated; 

5. TEP with wind and wind uncertainty: in this 
scenario the effect of wind uncertainty is 
investigated; 

The proposed method is applied on the IEEE 57-bus test 
system. This method is a bi-step optimization problem where 
in the first step, a DRP is applied for reducing the peak load 
and costs of TEP. TLBO and GWO algorithms are used to 
solve the TEP problem in the second step to understand the 
simultaneous effects of non-linear DRP, wind and wind 
uncertainty. The flowchart of the proposed method is shown 
in Fig.1. As can be seen, after applying NDR and TEP, the 
total cost is calculated. If the system’s normal operation cost 
is lower than the total cost of TEP (Before NDR and TEP), 
NDR is applied to increase the customer participation in 
NDR. This can be done by increasing (decreasing) the price 
of energy in peak hours (valley and off-peak hours) or 
decreasing the constraints of customer cooperation in NDR. 

Our contribution in this paper is as follow: 

1. Find the effect of NDR on TEP for combination of 
residual, commercial and office-building loads. 

2. Scenario reduction by RBNNC to study the 
uncertainty characteristic of wind. 

3. Find the simultaneous effect of non-linear DRP, 
wind and wind uncertainty on TEP problem. 

4. Probability calculation of the objective function 
occurrence (loss, Costs of generation and line 
constructions) 

5. Find the objective function related to the defined 
confidence level in order to provide better decision 
making. 

In section 2, briefly the modelling of NDR is proposed. 
In the following, TEP model is illustrated in section 3. TLBO 
and GWO algorithms are provided in section 4 and 5, 
respectively. Study of network and simulation results are 
presented in section 6. Finally and in section 7, the 
conclusion is provided. 
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2. Modelling the Non-Linear Demand Response 
Program 

Three different models are used to model the customer 
response including power, exponential and logarithmic non-
linear models. These models are studied carefully in [28]. It 
has been proved that logarithmic non-linear model is more 
effective than the others in most cases and on this basis, it is 
used in this paper. In the following the final customer's 
demands are provided: 
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Fig. 1. Flowchart of the proposed method. 

where d(i) is the customer demand, E(i,j) is the cross-
elasticity, P(i) is the electricity price. 

3. Problem Formulation 

The TEP problem is formulated to minimize the total 
cost including cost of generation, cost of line construction 
and cost of loss. The TEP formulas are as [27]: 
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where ni is the number of circuits added to the right-of-way i; 
Ki is the candidate circuit cost for addition to the right-of-
way i; d is the system runtime which is considered here as 
4830 hours [27]; Cl is the loss cost per kWh; ei is the number 
of circuits in the main base system; Ii is the electrical current 
in the ith circuit; Ri is the resistance of ith circuit; m is the 
right-of-way allowed to be the added line; m0 is right-of-way 
not allowed to be the added line; ai, bi, and ci are the cost 
coefficients; Pi is the active power generated from ith 
generator. Equation (14) is the constraint of power equation 
which is resulted from calculating power flow, where Pij is 
the active power in line i to j; and PGi and PDi are the active 
power generation and load on ith bus. Equation (15) is the 
constraint of overload that can be introduced as a penalty for 
the overload of each circuit, where Pimax is the maximum 
active power flow in ith circuit. Equation (16) is the upper 
and lower constraint of the number of circuits that can be 
added to right-of-way i. 

4. TLBO Algorithm 

Recently TLBO has attracted more attention in electrical 
engineering [29]. TLBO is a population-based method where 
teacher and students are the main elements of this algorithm. 
In two steps, the students increase their level: 

• Teacher step: in this step, teacher tries to increase 
the class level; 

• Student step: in this step, by interaction through 
other students, students increase their scores; 

The best answer or most knowledgeable student is called 
the teacher. The two steps of TLBO algorithm are explained 
in below: 

3.1. Teacher Step 

The best answer or teacher tries to increase the student 
class level from Mi to MT (his own level), but in reality, it is 
impossible. Therefore, teacher tries to increase Mmean 
(average level of the class) to a M2 (higher level). Good 
teacher or suitable answer performs better for the students. 
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To understand this step, the difference between MT and Mmean 
is calculated as: 

_ (M T M )i i T f meandiffer mean r= −            (2) 

where Tf is the teacher factor between 1 and 2 and ri is a 
random variable in [0 1]. Based on differ_mean, the answer 
will be updated as follows: 

_new old
i i iX X differ mean= +             (3) 

3.2. Student Step 

A comparison is made between two different students (Xi 
and Xj). If the first student (Xi) has more knowledge against 
the second student (Xj), this will learn new things, otherwise, 
the second will learn new things. On this basis, Xi will be 
updated as the following equations: 
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5. Gray Wolf Optimization Algorithm 

Gray wolf optimization algorithm is one of the new 
introduced meta-heuristic optimization algorithms [30]. This 
algorithm is inspired by the wolves pack where α is leading 
the group. In the next level β wolves are existed where their 
role are helping α to make better decisions. Scout, sentinel, 
elder, hunter and caretakers are the next duty of δ wolves. 
The end level wolves are ω where their duty is scapegoat. 

In the gray wolf optimization algorithm, α is considered 
the best solution. α is followed by β and δ and the reminder 
solutions are considered ω. When the wolves go hunting, 
they want to circle their pray. This behaviour can be 
modelled by the following equations: 

. ( ) ( )pD C X t X t= −
rr r r

            (6) 

( 1) ( ) - .pX t X t A D+ =
rr r r

            (7) 

where X
!

 is the vector position of gray wolf, pX
!

 is the 

vector position of the prey and t is the current iteration. A
!

 
and C

!
 are coefficient vectors which obtained by the 

following equations: 
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where a!  is set to reduced from 2 to 0 over the optimization 
period, and 1r  and 2r  are random vectors in [0,1]. 

The three best solutions (α, β, δ) are saved and other 
solutions (ω) update their positions based on current best 
positions. The related equations are provided as below: 
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6. Simulation and Results 

In this paper, proposed method has been studied on IEEE 
57-Bus System in order to investigate the effects of NDR and 
TEP on network’s total cost. The information of the case 
study can be found in [31]. 

Load profile for residual, commercial and office-
building load has been shown in the Fig. 2, Fig. 3 and Fig. 4, 
respectively. There are two thresholds, 0.55 and 0.8. The 
load values lower than first threshold (0.55) is considered as 
valley. The load values between first threshold (0.55) up to 
second threshold (0.8) is considered as off-peak. The load 
values higher than second threshold (0.8) is considered as 
peak. Peak, off-peak and valley times for different load types 
are summarized in Table 1. 

The electricity price in Iran is 150 Rials/kWh as the flat 
rate, 40 Rials/kWh in valley periods, 160 Rials/kWh in the 
off-peak period and 400 Rials/kWh for the peak period [32]. 
Self- and cross-elasticity for residual load have been shown 
in Table 2. Considering equal elasticity matrix for 
commercial and office-building loads, self- and cross-
elasticity have been tabulated in Table 3. 
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Fig. 2. Residual load profile. 
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Fig. 3. Commercial load profile. 
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Fig. 4. Office-building load profile. 
 

Non-linear demand response program discussed in 
section 2 has been implemented on three different load types 
and the results have been depicted in Fig. 5, Fig. 6 and Fig. 
7. It is easily understood that the load values have been 
shifted from peak hours to valley and off-peak hours. In 
other words, load reduction in peak hours can help lowering 
system stresses. 

Table 1. Peak, off-peak and valley times for different load 
types 

Load Type Valley Off-peak Peak 

Residual 1-2-3-4-5-6-
7-8 

9-10-11-12-
13-18-19 

14-15-16-
17-20-21-
22-23-24 

Commercial 
1-2-3-4-5-6-
7-13-14-15-

16 

8-9-17-18-
22-23-24 

10-11-12-
19-20-21 

Office-
building 

1-2-3-4-5-6-
7-19-20-21-

22-23-24 

8-9-14-15-
16-17-18 

10-11-12-
13 

 

Table 2. Self- and cross-elasticity for residual load 

 Valley Off-Peak Peak 
Valley −0.10 0.01 0.012 

Off-Peak 0.01 −0.10 0.016 
Peak 0.012 0.016 −0.10 

Table 3. Self- and cross-elasticity for commercial and office-
building loads 

 Valley Off-Peak Peak 
Valley −0.07 0.006 0.0072 

Off-Peak 0. 006 −0. 07 0.0096 
Peak 0. 0072 0. 0096 −0. 07 
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Fig. 5. Residual load diagram before and after the NDR. 
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Fig. 6. Commercial Load diagram before and after NDR. 
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Fig. 7. Office-building load diagram before and after the 
NDR. 
 

As loads have different characteristics, for example the 
peak of office-building occurs at 12 mid-day, it is better to 
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consider the worst case for transmission expansion planning. 
For this purpose and on this basis that the loads in the 
network are one of residual, commercial and/or office-
building type, these three loads are summed up and the time 
of peak are obtained. Therefore, 8 p.m. is derived as the peak 
time (worst time). In this paper, it is assumed that the only 
loads of buses 9, 12, 16 and 18 are responsive. Also, the 
types of them are office-building, commercial, residual and 
residual, respectively. 

Two scenarios are considered to evaluate the 
effectiveness of the demand response program in reducing 
the total costs including generation, loss and line 
construction costs. The first scenario is optimal load flow 
before applying the NDR. In the second scenario, the optimal 
load flow is running considering NDR. The results of the 
first and second scenarios including loss, cost of loss, cost of 
generation, cost of line construction and total cost are 
presented in Table 4. It is worth to mention that loss per 
MWh for IEEE 57 bus network is 3.48 $/MWh. As can be 
seen, NDR makes the cost of generation and cost of loss to 
be decreased and consequently, the total cost to be reduced. 
Reduction percentage of loss, cost of loss, cost of generation 
and total cost has shown in Fig. 8. As can be shown, 7.48, 
7.47, 8.7 and 8.6% reduction on loss, cost of loss, cost of 
generation and total cost has been seen by NDR. 

Table 4. Results of OPF before and after the NDR 

Scenar
io 

Loss 
(MW) 

Cost 
of 

Loss 
($/h) 

Cost of 
Generati
on ($/h) 

Cost of 
Line 

constructi
on ($/h) 

Tota
l 

Cost 
($/h) 

Before 
DR (1) 

16.51
32 

57.46
60 41738 481.1636 4227

7 
After 

DR (2) 
15.27

84 
53.16

90 38109 481.1636 3864
3 
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Fig. 8. Reduction percentage after the NDR. 

As stated before, wind energy has attracted more 
attention in the world and its usage is increasing. Wind 
energy can provide local loads and it is expected to increase 
lines capacities. Therefore, it causes a delay in adding new 
lines. Moreover, loss and generation costs are decreased. In 
the following, the effect of wind energy on TEP will be 

investigated. Wind output power can be stated by the below 
equation [32]: 

w cut in

cut in
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P 0  v

v-v
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P

cut out

r cut in r

r r cut out

forv or v v

P forv v v

P forv v v

= < >

= ≤ ≤

= ≤ ≤

        (17) 

where vcutin, vcutout, vr, Pr and Pw are low wind speed, high 
wind speed, rated wind speed, rated power and wind power, 
respectively. 

Due to intermittent nature of wind energy, the results of 
TEP have uncertainties. In this paper, Mont-Carlo method is 
used to study the uncertain nature of the wind energy. 
Investigations have shown that wind behavior does not 
follow Weibull distribution. Therefore for providing Mont-
Carlo scenarios, it is better used the real data and empirical 
cumulative density function (ECDF) [33-34]. Wind speed 
data was provided from Khaf in Iran. The data were collected 
as 1-hour time-stamped values for a period of 3 years. 
Empirical cumulative density function (ECDF) was applied 
for the recorded data in each hour. Then, sets of uniformly 
distributed samples on [0, 1] was provided by applying a 
random number generation algorithm. The generated uniform 
samples were converted to sets of simulated variables having 
the same uncertain nature as the recorded data using inverse 
ECDF transformation. 

Using 1000 randomly generated values in the range [0,1] 
and using ECDF of wind, Fig. 9, 1000 scenarios for wind 
speed and wind power are generated. As TEP is time-
consuming simulation, using Radial Based Neural Network 
Clustering, these 1000 scenarios are decreased to 30 
scenarios [35-38]. In the Fig. 10, the nature of 1000 scenarios 
against 30 scenarios is shown. As can be seen, these have 
similar nature and it is possible to use 30 scenarios based on 
Mont-Carlo to investigate TEP program considering wind 
uncertainty. 
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Fig. 9. ECDF of wind speed at 8:00 p.m. 
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Fig. 10. Nature of 1000 and 30 scenarios. 

In the next step after applying NDR, TEP was applied. 
The lines can be added between buses 1, 2, 3, 6, 8, 9, 12, 16, 
and 17 and the maximum allowable number of new lines 
permitted to be added is 3. The TEP is performed using 
TLBO and GWO algorithms in order to minimize total cost 
in the following scenarios: 

• Scenario 3: TEP using TLBO without wind is 
studied; 

• Scenario 4: TEP using GWO without wind is 
studied; 

• Scenario 5: TEP using TLBO with wind is studied; 

• Scenario 6: TEP using GWO with wind is studied; 

• Scenario 7: TEP using TLBO with wind and wind 
uncertainty is studied; 

• Scenario 8: TEP using GWO with wind and wind 
uncertainty is studied; 

The results of above scenarios are summarized in Table 
5. 

In Fig. 11, the value of loss for scenarios 1 up to 8 has 
been shown. Before NDR, the value of loss is 16.5132 MW 
while after that; the value of loss is decreased to 15.2784 
MW. Adding new lines by TEP using TLBO algorithm in 
scenario 3 resulted in reduction of the loss to 9.8771 MW 
while by TEP using GWO algorithm in scenario 4 resulted in 
reduction of the loss to 9.7438 MW. As wind provides local 
loads, it makes the loss to be decreased to 9.7276 MW in 
scenario 5 using TLBO algorithm and to 9.535 MW in 
scenario 6 using GWO algorithm. Because of uncertainty of 
the wind, the value obtained in scenario 5 and 6 are not 
precise and the value of loss considering uncertainty is 
9.7738 MW in scenario 7 using TLBO algorithm and 9.5666 
MW in scenario 8 using GWO algorithm. 

 

 

 

 

Table 5. Results of TEP for different scenarios in a 57-bus 
network. 

Scenario 

L
oss (M

W
) 

C
ost of L

oss 
($/h) 

C
ost of 

G
eneration 

($/h) 

C
ost of L

ine 
construction 

($/h) 

T
otal C

ost 
($/h) 

(3) 
9.8771 34.3722 37854 515.6575 38404 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–16(3),3–8(3),6–8(3),8–

9(3),8–12(3),8–16(3),8–17(3),12–16(3) 

(4) 
9.7438 33.9084 37104 513.0041 37651 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–16(3),3–8(3),8–9(3), 8–

12(3),8–16(3),8–17(3),12–16(3) 

(5) 
9.7276 33.8521 34973 510.6861 35518 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–9(3),3–8(3),6–8(3),8–

9(3),8–16(3),8–17(3) 

(6) 
9.5350 33.1818 34253 508.0022 34794 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–9(3),3–8(3),6–8(3),8–

16(3),8–17(3) 

(7) 
9.7738 34.0128 34897 519.5612 35451 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–16(3),3–8(3),6–8(3),8–

9(3),8–12(3),8–16(3),8–17(3),9–16(3),12–16(3),12–17(3) 

(8) 
9.5666 33.2918 34171 515.7214 34720 

No. of Lines Added Between Two Different Buses : 
1–8(3),1–12(3),1–17(3),2–3(3),2–8(3),2–16(3),3–8(3),6–8(3),8–

9(3),8–12(3),8–16(3),8–17(3),9–16(3),12–16(3) 
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Fig. 11. Loss for different scenarios. 

The value of cost of line construction for different 
scenarios has been illustrated in Fig. 12. As no line is added 
in NDR, therefore NDR has not any influence on the cost of 
line construction. By adding new lines in TEP, cost of line 
construction is increased to 515.6575 MW in scenario 3 and 
to 513.0041 MW in scenario 4 against scenario 1 and 2. By 
postponing the construction of new lines in scenario 4 by 
wind, the cost of line construction is decreased in scenario 5 
and 6 against scenario 3 and 4. In other words, wind power 
not only provides the demand of the local loads, but also can 
remove the congestion of the lines. Therefore the cost of line 
construction is decreased. The values obtained in scenario 5 
and 6 are not precise due to wind uncertainty and the real 
values can be found in scenarios 7 and 8. 
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Fig. 12. Cost of Line Construction for different scenarios.  

In Fig. 13, the cost of generation for scenarios 1 up to 8 
has been provided. By shifting the load from peak hours to 
off-peak and valley hours, NDR decrease the cost of 
generation from 41738 $/h to 38109 $/h. By adding new 
lines and decreasing loss, the cost of generation is decreased 
to 37854 $/h and 37104 $/h in scenarios 3 and 4. Also, wind 
has great effect on the cost of generation and makes the cost 
of generation to be decreased to 34897 $/h and 34171 $/h in 
scenario 7 and 8. 
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Fig. 13. Cost of Generation for different scenarios. 

The value of total cost for different scenarios has been 
shown in Fig. 14. The effect of NDR can be easily found by 
comparing scenario 1 and scenario 2 results where total cost 
is decreased from 42277 $/h to 38643 $/h. By comparing 
scenario 2 with scenario 3 and 4 results, the effect of TEP 
can be found where the total cost is decreased to 38404 $/h 
and 37651 $/h. The effect of wind is found by studying the 
scenarios 5 up to 8. 

By studying different scenarios, it is easily can be found 
that GWO algorithm gives better results than TLBO 
algorithms. 

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 104

Scenario

To
ta

l C
os

t (
$/

h)

 
Fig. 14. Total Cost for different scenarios.  

Since GWO algorithm gives better results than TLBO 
algorithm then results of this algorithm including the ECDF 
of loss, cost of loss, cost of generation and cost of line 
construction have been shown in Figs. 15 to 18. To find the 
probability of the values for scenario 8 in Table 5, the values 
shall be crossed with ECDF curve and appropriate 
probabilities are obtained (strict red lines). The value of loss 
in scenario 8 is 9.5666 MW, when this value is crossed 
related ECDF curve, 0.208 is obtained. This means with 20.8 
% obtained loss is equal or lower than 9.5666 MW. It can be 
possible to look on the other view. Assume that the 85% is a 
suitable confidence level for system decision makers. The 
value 85% is crossed related ECDF, and the value of loss is 
obtained (dashed green lines). The loss of the network is 
equal or lower than 9.87 MW by probability of 85%. Similar 
to the loss, the cost of generation and cost of line 
construction are equal or lower than 36820 ($/h) and 523.3 
($/h), respectively.  
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Fig. 15. ECDF of loss. 
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Fig. 16. ECDF of cost of loss 
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Fig. 17. ECDF of cost of generation 
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Fig. 18. ECDF of cost of line construction 

7. Conclusions 

In this paper, the effects of NDR on reducing the final 
costs of a system in TEP for three different types of loads 
including residual, commercial and office-building was 
investigated. Using Mont-Carlo and based on Empirical 
Cumulative Distribution Function (ECDF), 1000 scenarios 
were produced to study the uncertainty characteristic of 
wind. As there are a lot of scenarios which are time 

consuming, Radial Based Neural Network Clustering 
(RBNNC) was used for decreasing the run-time significantly. 
Then TEP problem was solved using the TLBO and GWO 
algorithms in order to minimize the costs of generation, 
losses, and lines. The NDR can reduce the peak of the loads 
in peak hours and costs of TEP as well. Finding the 
simultaneous effect of non-linear DRP, wind and wind 
uncertainty on TEP problem illustrated the reduction in the 
total costs. Probability of the objective function occurrence 
(loss, costs of generation and line constructions) has been 
calculated. Also, the occurrence probability of objective 
function related to the defined confidence level has been 
calculated in order to provide better decision making. 
Simulation results proved the optimal effect of NDR and 
wind on postponing the additional cost of investments for 
supplying peak load. 
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