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Abstract- Gearbox faults are one of the most common and severe causes of energy losses in large wind turbine technology.  

Further, degradation of gearboxes is an elusive phenomenon by the point of view of diagnostics. Yet, nowadays the widespread 

diffusion of Supervisory Control And Data Acquisition (SCADA) control systems is a keystone for fault prevention. It is 

desirable to conjugate accuracy of the outputs with intuitiveness and reasonable computational cost.  The present work deals 

with these issues: some methods are proposed for data mining of SCADA gearbox temperature and vibration measurements. In 

particular, a model based on Artificial Neural Networks (ANN) is proposed and its performances are compared against similar 

approaches in the literature. It arises that vibration analysis at the time scale of SCADA data is not effective for fault diagnosis, 

even if powered by the artificial intelligence of the ANN, while the proposed ANN model for gearbox temperatures is useful 

for early fault diagnosis. The method is tested on the data sets of a wind farm in southern Italy and it is shown that it is useful 

for the diagnosis of incoming faults to three out of nine wind turbines of the site. 

Keywords wind energy, wind turbines, Artificial Neural Network, gearboxes, fault prevention, condition monitoring. 

 

1. Introduction 

Large wind turbines are dynamically loaded along all the 

chain transforming the slow rotation of the main shaft into 

fast rotation for feeding power output into the electric grid. 

For this reason, despite the developments in the technology, 

malfunctioning of gearboxes is one of the most common 

causes of producible energy loss. In [1, 2] it is estimated that 

a judicious prevention would cost around the 20% of what a 

sudden breakdown costs in terms of producible energy loss, 

and it is shown that the common rate of gearbox breakdowns 

justifies the need of condition monitoring techniques for fault 

prevention. This is one of the reasons of the widespread 

diffusion of control systems in wind turbine technology. As 

regards gearboxes, Turbine Condition Monitoring (TCM) 

systems employ accelerometers for recording vibrations at 

the kHz scale, at meaningful points. Turbine Condition 

Monitoring (TCM) through vibration analysis has pros and 

cons: basically high diagnostic power, against high cost and 

high complexity for elaborating the information [3] from the 

data stream into knowledge. Due to the scientific challenges 

of this approach, there is a vast literature about these issues. 

For some examples, see [4-11]. The point about vibration 

analysis is dealing with unsteady load conditions due to 

rapidly changing wind speed: in [12] and [13], for example, 

an angular resampling algorithm is proposed at this aim. In 

Figure 1, a practical example is proposed: a sample spectrum 

of planetary gearbox vibrations is reported. It highlights the 

features of this kind of data: they are raw and 

straightforward, but at the same time they are very noisy. In 

Figure 1, the meshing frequencies are highlighted in red; it 

arises that the real spectrum has peaks close to this 

theoretical values, but there is also a spread which is difficult 

to interpret. It might be due to a fault, but it is very complex 

to investigate which tooth is damaged without having an 

historical reference. Or it might be even due to unsteady 

working operations (i.e. turbulence): for example, in [14], a 

"wind to gear" approach is adopted to demonstrate that 
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turbines, which are in the lee of the wake of a nearby turbine, 

are affected by loads manifesting themselves at the level of 

gearbox vibrations. 

Therefore, for diagnostic issues it might be as valuable to 

have data sets which are less "direct", but at the same time 

naturally denoised: for this reason, the other possible 

approach for condition monitoring is exploiting Supervisory 

Control And Data Acquisition (SCADA) control systems. 

SCADA control systems are more versatile than ad hoc TCM 

systems, they have lower cost but they have less diagnostic 

power. For a comprehensive review about the possible 

approaches to condition monitoring, see [15]. SCADA 

systems record, usually on 10-minute time basis, the main 

information about wind conditions, about the response of the 

turbine (yaw alignment, pitch angle and so on), about power 

output, about thermal behaviour at meaningful parts of the 

turbine, possibly about structural vibrations and loads. The 

versatility of SCADA data results in their use for several 

intertwined tasks: assessing wind turbine operational 

behaviour [16-23], understanding wake effects [24-37], 

possibly in conjunction with complex wind flow induced by 

the terrain [38-45]. In [46], SCADA data are employed for 

predicting fatigue life of a main rear bearing in direct drive 

wind turbines sited in complex terrain. Temperature 

measurements at the gearbox conjugate simplicity to a 

reasonable degree of responsiveness to the mechanical status 

of the wind turbine. For this reason, the analysis of 

temperatures for fault diagnosis has attracted a considerable 

amount of attention in the scientific literature and the debate 

is very fertile. For example, in [47], oil temperature rises as 

recorded by SCADA control system are used for detection of 

incoming gearbox failures. In [48], a normal behaviour 

model of the electrical generator temperature is constructed 

and incipient failure is detected as anomalous residuals 

between model and actual temperature. A similar approach 

was employed for gearbox bearing temperature and cooling 

oil temperature in the very relevant work of [49], which has 

been inspiration for this study. In [50], ANN algorithms are 

employed for processing temperature data from 24 turbines. 

Bearing faults are predicted 1.5 hours before their 

occurrence, with 97% of accuracy. The time scale of this 

advance with respect to the fault onset is not exploitable for 

intervention: this motivates the need to push further, in order 

for the diagnosis to be sufficiently early. ANN techniques are 

employed in [51] for developing optimal maintenance 

strategies of wind turbines. In [52], a Bayesian network 

approach is employed for gearbox fault detection. In [53] 

too, an ANN-based algorithm for condition monitoring is 

proposed: a self-evolving maintenance scheduler framework 

for maintenance management of wind turbines is proposed. 

ANN techniques for anomaly detection are employed also in 

[54], and in [55] normal behaviour modelling of two wind 

turbine drive train temperatures has been investigated with 

several modelling approaches. 

One of the shortcomings of SCADA analysis for gearbox 

maintenance is that, being based on statistical analysis, it 

commonly requires vast data sets for providing meaningful 

indications: the most common opinion therefore is that 

SCADA can detect incipient faults at a late stage. Even if 

several developments have lately been reached for 

addressing these shortcomings and detecting faults in 

manageable advance [56], one of the aims of this work is 

giving some further response to such challenge. Actually, the 

objective of this work is employing Artificial Neural 

Networks, for their capability in reconstructing non-linear 

dependency between inputs and outputs, and formulating 

simple models for the diagnosis of occurring faults at the 

level of gearbox. The data sets employed have the 10-

minutes sampling time of the common SCADA control 

systems; the gearbox vibrations and the gearbox 

temperatures are selected as target output to model. It will be 

shown that the time resolution of SCADA is too coarse for 

reliable vibration analysis, which should be rather observed 

at its proper time scale (several Hz). The idea is therefore 

that a phenomenon and its side effects might have very 

different time scales: this is exactly the case of drivetrain 

vibrations and bearing heating. Depending on the technology 

at disposal, whose selection might be a matter of pros and 

cons basing on cost and complexity, fault diagnosis might be 

effective by analysing the phenomenon or its side effects. In 

this case, side effects of vibrations is heating and analysing it 

at the time scale of SCADA shall be shown to be very 

effective for fault diagnosis. One of the main novelties of this 

work is that the ANN model for internal temperatures is 

formulated in order for it to be as simple as possible. 

Actually, the minimum possible number of inputs is 

employed: outdoor temperature and active power. The 

objective is not only minimizing the computational cost. 

Comparing against other models in the literature [49], that 

feed the output at previous time steps as input to the ANN, it 

is actually shown that the proposed model is superior as 

regards the diagnostic power. The approach is tested on the 

data sets of a wind farm sited in southern Italy and it is 

shown that sharp diagnosis indications are provided for three 

out of nine wind turbines. 

 

Fig. 1. Sample planetary gearbox vibrations: in red, the 

meshing frequencies are highlighted. The frequency scale is 

normalized to the frequency of the rotation of the rotor. 

2. Materials and Methods 

The testing ground of the proposed methods is an 

onshore wind farm, sited in southern Italy and featuring 9 

turbines with 2 MW of rated power each. This test case has 
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been selected because of the vastness of the data sets at 

disposal and in particular because three turbines have 

undergone problems at the gearbox. The main features of the 

test case are summarized in Table 1. 

As regards temperature analysis, two methods are 

employed and the former, introduced in [56] is a support to 

the latter. The former method is a plot of the measurements 

of the rotor bearing temperature against the percentage of 

power with respect to the rated. This is done by averaging on 

intervals having as amplitude the 10% of the rated power. 

Comparing the behaviour of one turbine against the other on 

a reasonably vast statistical basis allows to identify 

mechanical problems with a manageable advance, as 

discussed in [56]. The drawback of this method is that it is 

demanding by the point of view of the size of the data set, in 

order to give reliable responses, and it can be prohibitive to 

reduce the size of the data set for early fault diagnosis. 

The philosophy of this work is employing the above 

approach as a support to another, more responsive, method. 

The idea is that a considerable statistical basis, describing 

each turbine producing output under expected thermal 

behaviour, can be fed to a model: once this is consistently 

trained, it can be capable of identifying anomalies on time 

scales shorter than required by the method of [56]. The 

vastness of the debate in the scientific literature clearly 

identifies the candidate approach as ANN-based. A similar 

problem has been addressed in [49], and the starting point for 

this work has therefore been selected as the same model: 

rotor bearing temperature as output; as inputs the outdoor 

temperature, the power output, the rotor bearing temperature 

one and two time steps earlier. In Section 2, it is shown that 

this model (named as M2) is not effective on the selected test 

case for detecting gearbox problems: in other words, when 

some wind turbine show anomalous behaviour (identified 

through the power - temperature plot), anomalous residuals 

between simulation and actual measurements don't manifest. 

For this reason, another model is proposed, named as M1. 

The idea is therefore that one could possibly select as inputs 

only "external" variables. Further, the internal temperature 

signal, selected as target, should be as responsive as possible 

to the input variables: in this case, external temperature and 

collective motion of the shaft. Therefore, rotor bearing 

temperature is selected as output; outdoor temperature and 

power output are selected as inputs. Due to its relevance for 

fault diagnosis, which shall be shown later on, the structure 

of this model is sketched in Figure 2. The ANNs are feed-

forward with ten neurons and the number of neurons is set 

through a sensitivity analysis. 

 

 

 

 

 

Fig. 2. The structure of the M2 ANN model. 

The test case wind farm has been selected because three 

turbines (T1, T2 and T6) have undergone gearbox 

malfunctioning: actually, this malfunctioning has been 

correctly diagnosed using the approach of this work and that 

of [56], in support, and it has been possible to service the 

wind turbines before a traumatic breakdown. The 

effectiveness of the proposed model is validated on multiple 

time scales: three months, one month, one week, one day 

(that is, even just few dozens of points). Actually, one key 

point of this approach is the fact that the proposed model can 

be responsive also with few dozens of points as validation 

data set. This marks a concrete improvement with respect to 

the method of [56]. In that case, for each diagnosis attempt a 

considerable data set was required. Instead, with an 

appropriate model one can train on a historical basis (with a 

vast data set) once and for all, and validate on very short time 

scales. This is less time consuming by a computational point 

of view and the shortness of the data sets required for 

responsiveness points at a concrete (because validated 

against a real case) improvement in early fault detection.  

The training data set is made of 13128 10-minute based 

measurements, collected over six months, during which the 

wind farm was producing output in unison.      

Further, it has been investigated if it is effective for fault 

diagnosis to approach directly vibration amplitudes as 

collected by the SCADA control system. In particular, drive-

train vibration amplitudes are analysed. An approach is 

adopted, similar to the case of bearing temperatures. Two 

models are considered: in both of them, drive-train 

oscillation amplitude is selected as output. In the former, 

inputs are external temperature and power output. In the 

latter, inputs are wind speed and power output. In Section 2, 

it is shown that these models don't provide meaningful 

indications of incoming problems at the gearbox. In some 

sense, the philosophy is that vibrations are responsive in a 

very straightforward way to mechanical faults, when 

analysed on the proper time scale (several Hz, at least) and 

with appropriate techniques. If one instead wants to adopt the 

10-minute time basis of SCADA data, because it is less 

demanding by the point of view of the techniques, one can 

detect mechanical problems through by observing slower and 

more persisting phenomena, as thermal effects are. In Table 

2, a summary of all the models employed in this work is 

proposed.   
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Table 1. Features of the test case 

Number of turbines 9 

Rotor diameter 82 meters 

Hub Height 80 meters 

Rated Power 2 MW 

Terrain Flat 

Rated speed 13 m/s 

Cut-in speed 4 m/s 

Cut-out speed 25 m/s 

 

Table 2. The structure of the ANN models. 

Model Output Inputs 

M1 Rotor bearing temperature Power Output 

External Temperature 

M2 Rotor bearing temperature Power Output 

External Temperature 

Rotor bearing temperature one and 

two time steps earlier 

M3 Drive-train vibration amplitude Power Output 

External Temperature 

M4 Drive-train vibration amplitude Power Output 

External Temperature 

Drive-train vibration amplitude one 

and two time steps earlier 
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M5 Drive-train vibration amplitude Power Output 

Nacelle wind speed 

M6 Drive-train vibration amplitude Power Output 

Nacelle wind speed 

Drive-train vibration amplitude one 

and two time steps earlier 

 

3. Results 

In Figure 3, a rotor bearing temperature vs. power plot is 

shown. The data set is the one employed for the training of 

the ANN models. From this Figure, it arises that one should 

expect the training data sets to have a good quality, in the 

sense that every wind turbine of the farm has a regular 

behaviour as regards rotor bearing temperature: the trends are 

very compact and from the status codes data sets it arises that 

there are no alarms regarding temperatures 

 

 

Fig. 3. Rotor bearing vs Power, during the training period. 

Bins have amplitude of the 10% of the rated power. 

 

For brevity, the model proposed in this work is named M1 

and the model of [49] is named M2 (see Table 2), and they 

are going to be validated against several data sets having 

very different lengths. They are summarized in Table 3. The 

metrics for evaluating the quality of the validation are the R2 

and the Mean Absolute Error (MAE). 

 

Table 3. Summary of the validation periods 

Period Duration 

P1 3 months 

P2 1 month 

P3 1 week 

P4 1 day 

 

In Table 4, the results are collected for the P1 validation data 

set: it arises that, using the M1 model, the couple of metrics 

R2 and MAE indicates an anomalous mismatch between 

simulation and real data for turbines T1, T2 and T6. Three 

months of data are surely enough for investigating the 

thermal behaviour of the turbines using the same kind of plot 

of Figure 3: this can be considered a crosscheck of the 

proposed ANN approach. The results are shown in Figure 4: 

actually, a severely anomalous behaviour of turbines T1, T2 

and T6 is highlighted. 

Table 4. Validation metrics: P1 data set 

Turbine R2 – M1 MAE – 

M1 

R2 – M2 MAE – 

M2 

T1 0.538 0.043 0.999 0.002 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
D. Astolfi et al., Vol.7, No.2, 2017 

 970 

T2 0.534 0.083 0.999 0.002 

T3 0.834 0.024 0.999 0.002 

T4 0.851 0.030 0.999 0.002 

T5 0.819 0.029 0.999 0.002 

T6 0.398 0.093 0.999 0.002 

T7 0.823 0.028 0.999 0.002 

T8 0.820 0.029 0.999 0.002 

T9 0.858 0.027 0.999 0.002 

 

 

Fig. 4. Rotor bearing vs Power, during the P1 validation 

period. Bins have amplitude of the 10% of the rated power. 

 

In Table 5, the results are shown for the validation data set 

P2: it arises that, using the M2 model, the turbines T1, T2, T6 

are indicated as anomalous. In particular, the R2 considerably 

falls with respect to the other turbines. The M2 model looks 

indecisive as regards anomaly detection, on the P2 data set. 

On a monthly time scale, it is still reasonable to adopt the 

approach of Figures 3 and 4, and for this reason the same 

kind of plot is shown in Figure 5. It arises that turbines T1, 

T2 and T6 show indeed a very anomalous behaviour, and the 

suggestion coming from model M1, in the form of mismatch 

between simulation and reality, is correct. 

 

 

Table 5. Validation metrics: P2 data set 

Turbine R2 – M1 MAE – 

M1 

R2 – M2 MAE – 

M2 

T1 0.362 0.045 0.998 0.003 

T2 0.269 0.078 0.999 0.002 

T3 0.697 0.049 0.997 0.003 

T4 0.681 0.044 0.997 0.002 

T5 0.640 0.036 0.998 0.002 

T6 0.189 0.074 0.999 0.002 

T7 0.664 0.047 0.998 0.002 

T8 0.671 0.036 0.999 0.002 

T9 0.762 0.029 0.999 0.002 

 

 

Fig. 5. Rotor bearing vs Power, during the P2 validation 

period. Bins have amplitude of the 10% of the rated power. 

 

Table 5 indicates that the diagnostic power of model M1 is 

considerably higher than model M1. This is reasonable, 

because if one feeds an ANN with the output at previous 

steps as input, it is likely that the cross-correlation between 

subsequent time steps dominates over the dependency on real 
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inputs and is independent on the functioning (anomalous or 

not) of the wind turbine. Further zoom is actually provided 

by Figures 6 and 7: they are time series of simulated and real 

data during validation period P1, for turbine T6, using 

respectively model M1 and M2. The results are in units of the 

maximum rotor bearing temperature measured during the 

training period. From Figures 6 and 7, it arises that the M2 

model reproduces almost exactly the temperature 

fluctuations, while model M1 doesn't. Even if it doesn't come 

as a surprise, on the grounds above, that models M1 and M2 

have different precision in general, model M1 reasonably 

catches the trend of temperature fluctuations on a local scale, 

but only when the turbine is operating properly: as a 

crosscheck, this is shown in Figure 8 for turbine T4. 

 

Fig. 6. Time series of simulated vs. measured data, using 

model M1: validation period P1, turbine T6 

 

 

Fig. 7. Time series of simulated vs. measured data, using 

model M2: validation period P1, turbine T6 

 

 

Fig. 8. Time series of simulated vs. measured data, using 

model M1: validation period P1, turbine T4 

 

In Tables 6 and 7, the validation metrics are reported for the 

P3 and P4 data sets. From the Tables, it arises that model M1 

indicates anomalous mismatch and scarce correlation 

between simulated and real data for turbines T1, T2 and T6. 

Instead, model M2 doesn't provide clear diagnostic 

indications. It is particularly valuable that the approach of 

Figures 4 and 5 wouldn't be applicable for the P3 and P4 data 

sets, because they are too short. In particular, the M1 model 

gives consistent indications also for the P4 data set, which is 

composed by just few dozens of measurements. 

 

Table 6. Validation metrics: P3 data set 

Turbine R2 – M1 MAE – 

M1 

R2 – M2 MAE – 

M2 

T1 0.482 0.033 0.996 0.003 

T2 0.235 0.064 0.997 0.002 

T3 0.693 0.023 0.993 0.002 

T4 0.485 0.030 0.997 0.002 

T5 0.544 0.037 0.996 0.002 

T6 0.429 0.050 0.996 0.003 

T7 0.539 0.030 0.996 0.002 
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T8 0.696 0.029 0.997 0.002 

T9 0.550 0.036 0.997 0.003 

 

Table 7. Validation metrics: P4 data set 

Turbine R2 – M1 MAE – 

M1 

R2 – M2 MAE – 

M2 

T1 0.227 0.043 0.993 0.003 

T2 0.021 0.037 0.997 0.002 

T3 0.406 0.031 0.981 0.002 

T4 0.372 0.026 0.983 0.002 

T5 0.113 0.032 0.987 0.003 

T6 0.049 0.051 0.997 0.001 

T7 0.379 0.031 0.995 0.001 

T8 0.358 0.031 0.995 0.002 

T9 0.456 0.031 0.990 0.002 

 

As regards ANN models for drive-train vibrations, the model 

having external temperature and active power as input and 

vibrations as output is labeled as M3. M4 is the model built 

parallel to the one in [49], having external temperature, 

active power and vibrations one and two time steps earlier as 

inputs. M5 and M6 are the same as, respectively, M3 and M4, 

but with nacelle wind speed instead of external temperature. 

See Table 2 for a recap. The selected validation period is P2, 

because one month of data has been considered a reasonable 

halfway and especially because it is already known from 

Figure 5 and Table 5 that turbines T1, T2 and T6 are 

undergoing anomalous functioning. The validation metrics 

are collected in Tables 8 and 9. 

 

 

 

Table 8 Validation metrics: P2 data set 

Turbine R2 – M3 MAE – 

M3 

R2 – M4 MAE – 

M4 

T1 0.551 0.082 0.874 0.040 

T2 0.779 0.058 0.903 0.038 

T3 0.776 0.070 0.934 0.030 

T4 0.425 0.084 0.899 0.034 

T5 0.425 0.100 0.867 0.039 

T6 0.450 0.085 0.891 0.036 

T7 0.422 0.093 0.906 0.035 

T8 0.431 0.076 0.902 0.031 

T9 0.497 0.073 0.908 0.033 

Table 9 Validation metrics: P2 data set 

Turbine R2 – M5 MAE – 

M5 

R2 – M6 MAE – 

M6 

T1 0.600 0.096 0.873 0.043 

T2 0.763 0.067 0.907 0.038 

T3 0.805 0.064 0.936 0.033 

T4 0.446 0.115 0.886 0.038 

T5 0.407 0.137 0.860 0.044 

T6 0.475 0.113 0.886 0.039 

T7 0.502 0.088 0.905 0.036 

T8 0.415 0.097 0.901 0.032 
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T9 0.566 0.091 0.913 0.032 

 

From Tables 8 and 9 it arises that the models are not capable 

of highlighting the anomalies of turbines T1, T2 and T6: the 

metrics don’t distinguish them with respect to the rest of the 

wind farm. The key point is the sampling time: for vibrations 

it is several Hz, for SCADA it is 10 minutes. The general 

lesson is that a straightforward analysis of vibration signals 

should be addressed on its proper time scale, as for example 

in [57], where 32 Hz data are analysed with ANN techniques 

for early fault diagnosis. Consequences of mechanical 

phenomena might have different characteristic time and 

therefore be slower and more persistent: this is the case of 

thermal effects, and that is why ANNs are capable of 

reconstructing the behaviour of drive-train temperatures 

using data with 10 minutes sampling time. Comparing 

models M1 and M2, a further lesson arises: precisely because 

thermal effects are "slow", if one trains a model using as 

input the output at previous steps, one loses the diagnostic 

power, because the cross correlation between what happens 

now and what will happen soon dominates over the 

dependency on "external" variables. 

4. Conclusion and Future Work 

This work was devoted to the issue of early detecting of 

mechanical damages to large wind turbine gearboxes. 

SCADA data have been selected as source of information to 

process: actually, as discussed in the Introduction, despite 

SCADA are considered late stage indication of incoming 

faults by the point of view of condition monitoring, 

impressive developments are being achieved. Therefore, as 

regards fault diagnosis, SCADA analysis (also because of its 

simplicity, intuitiveness and low cost) is struggling in 

competitiveness against vibration analysis. 

In this work, an onshore wind farm sited in southern 

Italy has been studied as test case. Rotor bearing 

temperatures and drive-train vibrations have been elaborated 

through ANN techniques. The lesson is that, employing 10-

minute based SCADA data, the proposed model for gearbox 

vibrations is not responsive for fault diagnosis. Actually, 

averaging on 10-minutes basis a phenomenon having typical 

time scale of several Hz drowns the information. In other 

words, a phenomenon should be analysed on its proper scale, 

while consequences of it might have different scales. 

Anomalous mechanical functioning of gearboxes can have 

persistent consequences as regards heating and this has 

indeed proven to be the case for the selected test wind farm. 

A model has therefore been proposed, targeting rotor bearing 

temperature as output in function of outdoor temperature and 

active power, and it has been shown that it is responsive in 

diagnosing incoming faults, through the anomalous 

mismatch between actual measurements and simulated ones. 

Three out of the nine turbines of the test case wind farms are 

actually highlighted as subject to incoming gearbox faults 

and the validation has been conducted on several test periods 

having different lengths (from few months to just one day).  

A vast debate in the scientific literature is devoted to 

optimization of data mining algorithms for wind turbine fault 

diagnosis. A lesson coming from the test case of the present 

work is that machine learning algorithms should not be 

doped with the history of the output to study, because 

diagnostic power is lost. In other words, if one wants to 

model rotor bearing temperature, it is better to employ only 

"external" variables as inputs. If input to the model is also 

added in the form of the output itself at previous steps, for 

thermal phenomena the cross correlation between what 

happens and what will happen dominates over the 

dependency on variables external to the gearbox and the 

model reproduces faithfully also anomalous behaviour: no 

room is left for identifying faults as mismatch between 

simulation and actual measurements. This lesson is 

resembled in the fact that the diagnostic power of the 

proposed model has proven to be superior with respect to the 

one of [49], on the test case of this work (see Figures 6 and 

7). 

The results are interesting not only in the context of 

machine learning techniques. Actually, the method proposed 

in [56] is used as a support to the one proposed in this work 

and as a milestone to compare with. The two methods have 

two main differences: the method of [56] requires a 

considerably vast data set each time it is applied (a 

reasonable rule of thumb is one month of data), while the 

method of this work requires a statistical basis once and for 

all and can subsequently be validated with success even on 

very short time scales (P4 is only one day of data). Further, 

the method proposed in this work can easily be automated 

also as regards the phase of fault identification through the 

analysis of MAE and R2 metrics. 

A challenging further direction of this work is 

connecting microscopic and macroscopic wind turbine 

underworlds, i.e. gearbox vibrations to SCADA data. Some 

first developments are collected, for example, in [14], where 

a "wind to gear" approach has been proposed for connecting 

a flow phenomenon to a mechanical phenomenon and 

understanding the mechanics of the gearbox under complex 

flow. A "temperature to gear" approach would be very 

valuable and it would constitute an impressive upgrade of 

this work. 
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