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Abstract: Remote (or rural) area electrification is one of the main concerns, especially in developing countries. This paper 

presents a detailed investigation of different energy control strategies for a standalone microgrid in a remote area. In this 

microgrid, solar energy is considered as the primary energy source. Besides, taking into consideration stochastic nature of 

PV systems, a backup system that comprises a fuel-cell stack is hybridized, to avoid lack of energy and improve the reliability 

of the load. A battery bank and a supercapacitor pack are integrated as storage units along with an electrolyzer, as an alter-

native for energy storage. The electrolyzer absorbs the surplus energy production of the PV system if the battery bank reaches 

the maximum state of charge. Refueling the fuel-cell system with the stored hydrogen and meeting the average demand 

shortage, when the PV production is not sufficient, protects the battery bank against overcharge and deep discharge. In this 

paper, the main purpose is studying the energy control strategies that have high response time. These strategies, that are 

employed to control the energy flow, the fuel consumption, the dynamic performance, the microgrid efficiency, the bat-

tery/supercapacitors SOC, the energy sources/storage units life span and etc., include: the state machine control strategy, the 

rule-based fuzzy logic control strategy, the ANFIS-based control strategy, the equivalent consumption minimization strategy, 

the external energy maximization strategy, and the PI-type fuzzy logic control strategy. An effective approach is used to 

design the state machine control strategy and the rule-based fuzzy logic control. Additionally, the performance of all the 

energy control strategies, during different battery SOCs, is investigated. Finally, simulation results and the performance com-

parison of all the strategies are presented. Factors such as the fuel consumption, the fuel (and the fuel-cell) efficiency, and 

the battery (bank) state of charge, are used for assessment. 
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1. Introduction 

Nowadays renewable energy resources based power 

plants tend to replace their conventional (fossil fuels based) 

counterparts, as they are pollutant free, endless, economical 

and available [1]. Moreover, there are remote (or rural) areas 

all over the world, especially in developing countries, that 

do not have access to the main grid and still lack electricity 

power. As a result, off grid electrification through 

standalone microgrids is a beneficial solution, since extend-

ing the main grid is not always practical, cost-effective or 

affordable for rural residents [2, 3]. A microgrid usually 

comprises wind turbines and solar (PV) panels simultane-

ously or only one of them, depending on the climate charac-

teristics of the geographical location where the microgrid is 

installed [4]. The main drawbacks of solar and wind energy 

sources is rapid fluctuations in the generated power and the 

risk of the load power loss when there is no wind or sunlight. 

Therefor considering the microgrid reliability and aiming to 

provide continuous energy to the load, a backup energy unit 

is required [4]. Taking into account considerable benefits of 

fuel-cells, such as high fuel efficiency, fuel availability, long 

life time, clean and silent operation, and low maintenance 

cost [5, 6, 7], a fuel-cell stack is one of the best choices. 
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Appreciating the significant merits of the fuel-cell technol-

ogy, the slow dynamic 

response of the fuel-cell and the fueling problems, re-

lated to the production, storage, and transportation of the hy-

dro gen must not be ignored.      In addition, fuel-cells are 

unidirectional systems. Therefore, a battery (bank) is needed 

to control the energy flow in two directions and stabilize the 

DC bus voltage [8]. Furthermore, designing an energy man-

agement unit is another challenge to control the flow of the 

energy, the fuel consumption, the dynamic performance, the 

microgrid efficiency, the lifetime of the power sources, the 

battery/supercapacitors SOC and etc. [9, 4]. There are some 

studies related to the energy management of the microgrids 

in the literature. In short term analysis, with a time scale of 

seconds or minutes, a Mamdani-type rule- based fuzzy logic 

energy control strategy for a hybrid power system has been 

presented in [10]. It is discussed that designing experiences 

and knowledge about the components of the power system 

has an important role in the performance of this controller 

[9]. The authors in [11] compared the performance of Slid-

ing Mode and PI controller in a microgrid, but it is shown 

that PI controller performance is dependent on the operating 

point [12, 13]. Therefore, PI controller with fixed parame-

ters may not have effective performance, facing nonlinearity 

or parameter changes in the hybrid power system. [14]. The 

fuzzy logic controller does not need an exact mathematical 

model of the system and shows insensitivity to the system 

parameters variations [15]. Therefore, combination of linear 

PI controller with the fuzzy logic controller seems sound. 

Linear structure of the PI controller along with the fuzzy 

logic controller capabilities improves conventional PI con-

troller performance. The fuzzy logic control of a DC mi-

crogrid was discussed in [16], in which the authors designed 

the fuzzy logic controller such that extends the battery life-

time. The authors in [17] presented energy management of 

a fuel-cell/ battery hybrid system using fuzzy logics for res-

idential applications, in which they ruled daily AC electrical 

demand of a home during the 1400s of simulation for the 

energy management strategy performance assessment. A 

comparative study of different energy control algorithms 

consisting the "load following" and "the single-input single-

outputs extremum seeking control" schemes was presented 

by the author in [8], for a hybrid renewable system compris-

ing PV and wind energy as primary sources along with fuel-

cell technology as the support system. To evaluate the hy-

brid system performance under a real load and random 

PV/WT power, the authors ruled a residential home load 

profile and a sunny day PV/WT power profile during 12 sec-

onds of simulation. Moreover, Implementation of the state 

machine based control algorithm for a standalone hybrid 

system was presented in [18]. In addition, an ANFIS-Based 

control of a grid-connected hybrid power system is studied 

in [15]. The ANFIS-based controller employing the Sugeno-

type fuzzy inference system is more reliable than the 

Mamdani-type applied fuzzy controller.   In long term anal-

ysis, with a time scale of hour, different state machine power 

management strategies are employed in a pv/wind/fuel-cell 

hybrid system in [19]. This strategy needs an exact model of 

the system, and furthermore is sensitive to the errors or var-

iations in the parameters measurement, in contrast to the 

fuzzy energy management strategy [20]. The Authors in [21] 

proposed the same strategy with a different approach for a 

hybrid boat energy control system in which they considered 

the battery lifetime characteristics during the states’ defini-

tion stage. Although some of the problems of the classic 

strategies have been solved later, by introducing new algo-

rithms, such as dynamic programming [22] and model pre-

dictive control [23], but they added to the amount of the 

computations [9]. There was not any comparative study of 

the optimally or sub optimally designed energy control strat-

egies for standalone microgrids. This application needs 

more attention, but has not been studied extensively in the 

literature [24]. This motivated the authors of this paper to 

study the energy control strategies that are common either 

in microgrid studies or other applications, such as hybrid ve-

hicles or more electric aircraft power systems, that can be 

applied to standalone microgrids, and investigate which 

strategy works better for a microgrid, especially a  stand-

alone one in a remote area. This paper is organized as fol-

lows: First, the state machine control strategy is presented 

and then the rule-based fuzzy logic control strategy is dis-

cussed. Regarding the lifetime issue of the battery bank, an 

effective approach is used to design the states and the rules 

of the state machine control strategy and the rule-based 

fuzzy logic control strategy, respectively, which is similar 

to the one that is proposed in [21] for a hybrid boat energy 

management system. Simulation results verify the success-

ful operation of the discussed approach. Then, the ANFIS-

based control strategy, the equivalent consumption minimi-

zation strategy, the external energy maximization strategy, 

which is introduced by the authors in [25] for a fuel-cell hy-

brid emergency power system of more electric aircraft, and 

finally the PI-type fuzzy logic control strategy is studied. 

Next, the simulation results are presented and finally, the 

performance comparison of all the strategies, under differ-

ent operating conditions, is presented.  Criteria such as the 

fuel consumption, the dynamic performance, the fuel (and 

the fuel- cell) efficiency, and the battery (bank) state of 

charge, are used for comparison. The hybrid system para-

metrization is presented in the appendix 

2. Energy Management Strategies 

Energy control system influences the fuel economy, the 

lifetime of the energy sources, the fuel efficiency, the dy-

namic performance, the overall efficiency of the microgrid, 

and etc. [21-25]. An overall energy control scheme between 

the main energy sources/ storage units and the backup sys-

tem is necessary. This strategy helps to meet the (energy) 

demand requirements, such as high quality and reliable en-

ergy serving, while the design requirements and desired ob-

jectives are satisfied. These later requirements include: op-

timization of the hydrogen consumption, pollution emis-

sions minimization, decreasing stress on the energy sources/ 

storage units, extending useful battery life time, and etc. [26, 

27]. This paper focuses on the centralized energy manage-

ment unit. As observed in Fig. 1, the data of all the energy 

sources/ storage units are sent to the main control center and 

the control signals of the local controllers are determined 
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subsequently, based on all the design requirements and de-

sired objectives [25, 28].  In this section, six energy man-

agement strategies are studied in detail.

 
                                                                                Fig. 1. A typical PV/FC/UC hybrid Power System. 
  

2.1. State Machine Control Strategy  

 

This scheme is based on a series of states that are de-

fined based on the knowledge and past experience of the de-

signer, to describe the overall behavior of the hybrid power 

system [9]. Therefore, more knowledge of the system com-

ponents results in a more accurate and robust controller. Its 

sensitivity to the variations or errors in the measured signals 

besides requiring an exact mathematical model of the sys-

tem is the main drawbacks of this strategy [20, 29]. In this 

paper, the state machine control strategy is based on fifteen 

states to determine the desired reference for the fuel-cell 

output power, as shown in Table 1. The fuel-cell power is 

decided based on the load power, the battery state of charge, 

and the PV production. Three levels are considered for the 

battery SOC: low, medium, and high. Battery bank power is 

calculated, considering the power balance constraint be-

tween total power production and consumption (  Pload =
PPV + Pfc + Pbatt , If Pload  >  Ppv ). As observed, the super-

capasitors power is not considered in the constraint, because 

they meet the load power in transient time intervals. In other 

words, the energy demand will be shared between the PV 

system, the fuel-cell and the battery bank, at the steady state. 

We followed an approach similar to the one employed in 

[21], which is described below, to design the states. 

1) If (initial battery) SOC is high (SOC > 85%), the battery 

will be discharged, to help the fuel-cell provide the load 

power shortage, which is not supplied by the PV production.  

The battery bank lifetime characteristics issue has an im-

portant role in the states’ definition. The battery bank mini-

mum state of charge (SOCmin) and maximum state of charge 

(SOCmax) adjust the operation of the fuel-cell and the elec-

trolyzer, respectively. Generally, a minimum level is con-

sidered for the fuel-cell output power for efficient operation. 

If Pnet ≤ Pfcmin, which means that the energy demand short-

age is less than the fuel-cell minimum output power level, 

the fuel-cell will generate  Pfcmin and the remaining amount 

((Pnet − Pfcmin) < 0) is delivered to the battery bank. If the 

remaining amount is positive, the battery bank will be dis-

charged to meet the load demand shortage. If the battery 

SOC is high and the fuel-cell provides its maximum power, 

the energy demand shortage higher than  ′Pfcmax +
Poptdischarg′ will discharge the battery bank faster to meet 

the load power.  

 

2.2. Rule-based Fuzzy Logic Energy control Strategy  

In this paper, the rule-based fuzzy logic strategy has three 

inputs: the battery state of charge, the load power, the PV 

power generation and one output: the fuel-cell power. Three 

levels are considered for the battery SOC, as the state ma-

chine control strategy. As observed, the battery SOC is di-

vided into three ranges: “low”, “medium” and “high”. The 

PV production is divided into four fuzzy subsets: “very 

low”, “low”, “medium”, and “high” and finally, five fuzzy 

subsets are considered for the fuel-cell and the demanded 

power: ““very low”, “low”, “medium”,” high” and “very 

high”. An approach similar to the one that is used in the state 

machine control strategy is employed, to design the fuzzy 

rules. Two main objectives for developing the rules are: 

First, providing the load with continuous and reliable energy 

in every condition and second, preventing the battery bank 

from overcharge and deep discharge. Table 2 shows the if- 

then rule-base and Fig. 2 shows the membership functions. 

In this section, the Mamdani- type fuzzy interface system 

and centroid defuzzification method are utilized. Fig. 3 

shows the rule-based fuzzy logic energy management sys-

tem surface.  

 

2.3. ANFIS- Based Energy Control Strategy 

 

This scheme consists of five layers, based on the com-

bination of the Sugeno-type fuzzy inference system and 

neural networks. It includes a backpropagation algorithm 
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alone or a hybrid method (least-squares backpropagation) to 

tune the parameters of the membership functions and the 

structure of the associated fuzzy inference system based on 

a given set of the input/output data [15, 30]. 
 

Table 1. State Machine Control Strategy 

 

Pnet = Pload − PPV 

 Table 2.  Rule-based Fuzzy Logic Control Strategy Rule-base 

In this paper, the hybrid (least-squares backpropagation) al-

gorithm is used to tune the membership functions and the 

structure of the inference fuzzy system. Fig. 6(b) shows the 

ANFIS-based control strategy. The amount of the data that 

is collected from the state machine control strategy in ran-

dom the battery SOCs, the PV generation and the load 

power cases, which are used for the training, checking and 

testing, are presented in Table 3. The input and output vari-

ables were changed from zero to the maximum value, to col-

lect a fair input/output data set. This procedure merges the 

capabilities of the neural networks, and the fuzzy logic strat-

egy with the state machine control approach. The member-

ship functions, after training, are shown in Fig. 3.  The train-

ing error is below 5%. . 

2.4. Equivalent Consumption Minimization Strategy 

PV power generation is free of cost. As a result, the 

costs are assigned to the fuel consumption of the fuel-cell 
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Pload≤ PPV 0 Pnet 
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Fig. 2.  Membership functions. (a)  Load 

power (b)  PV power (c) Battery state of 

charge. (d))  Fuel-cell power.  
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and the equivalent (fuel) consumption of the battery unit. 

Once again, aiming to minimize the cost function (F),

which is formulated as equation 1, a local optimization 

technique is used.                                                                                                                                                        

F = ECMSfunction = Efc+(EQ1).  Ebatt  + 
(EQ2).  Esc                                                                                    

(1-1)  

Where EQ1  andEQ2are the equivalent factors and  
Efc , (EQ1).  Ebatt and (EQ2).  Esc are the fuel consumption 

of the fuel-cell, the battery bank equivalent fuel consump-

tion and the supercapacitors equivalent fuel consumption, 

respectively. As mentioned before, the supercapacitors try 

to satisfy the energy demand in transient time intervals and 

the load power will be shared between the PV system, the 

fuel-cell and the battery bank, at the steady state. Then, the 

supercapacitors equivalent fuel consumption can be over-

looked. Additionally, the fuel-cell hydrogen consumption 

and the battery equivalent fuel consumption are pertained to 

the fuel-cell power and the battery power, respectively [31]. 

Therefore the cost function can be rewritten as: 

F =Pfc+(EQ1).  Pbatt                                                  (1-

2) (1-2)                                    

2.4.2. Constraints 

Power balance constraint (between total power generation 

and consumption), that must be considered, is: 

Pnet =   Pload  − Ppv  = Pfc +  Pbatt                              

(2)

      

    (2) 

The equivalent factor EQ1 can be defined as [31]: 

EQ1  = 1 − 2 ∗ µ ∗
(SOC−0.5(SOCmax+SOCmin)

SOCmax+SOCmin
                (3)                                                                                                                                                      

Where µ is a constant that controls the battery state of 

charge (It is equal to 0.65 in this paper). The boundary con-

ditions, that limit the fuel-cell power, the battery bank 

power, the battery state of charge and the equivalent factor 

to their allowed limits, are: 

Pfcmin < Pfc <  Pfcmax                                           (4)                      

Pcharg max <  Pbatt < Pdischarg max                              (5)                                                   

SOCmin< SOC <SOCmax                                                  (6)                                                        

0 < EQ1 < 2                                                                   

(7) 

Fig. 4 shows the state machine control, the rule-based fuzzy 

logic strategy and the ECMS. 

2.5. EEMS  

In this paper, there are four energy sources/storage 

units, but the output of the primary source, is dependent on 

weather patterns, hence is not predictable. Then, only the 

load power shortage that is not supplied by the PV system is 

met by the combination of the fuel-cell stack, the battery 

bank and the supercapacitors. Consequently, the EEMS can 

be applied to the proposed microgrid in this paper, too  

2.5.1. Cost function 

The cost function, which aims to maximize the external en-

ergy, is formulated as: 

F =EEMSfunction = −Pbatt ∆T−0.5× C × ∆V2        (8)      

Where C, ∆ T  and ∆V  are the supercapacitor nominal 

capacity, sampling time and the supercapacitor 

charge/discharge voltage, respectively. 

                 

             (a) 

                 

                                                   (b) 

                                                 

                                                 (c) 

Fig.3. Membership functions. (a) (b)   Load power. Battery SOC.            

 (c) PV power  
Table 3. The Input Data Of The ANFIS-Based Energy 

Management Strategy. 

 

Similar to the equivalent consumption minimization strat-

egy, a local optimization technique is used to minimize F. 

 
2.5.2. Constraints 

The boundary conditions, which must be considered to limit 

the battery bank power and DC bus voltage to their allowed 

limits, are: 

Pcharg max <  Pbatt < Pdischarg max                               (9)                                                                                                                

 

Data Type 

 

Number 

Training 9044 

Checking (To avoid overfitting problems)                             1137 

Testing (To avoid overfitting problems) 1171 

Epochs 100 
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𝑉dcmin  <  𝑉dc  < 𝑉dcmax                                             (10)                                                                                                                                   

 The inequality constraint is: 
Pbatt ∆T

𝑉battnominalQ
≤SOC−SOCmin                                    (11)                                                                                                                                                                                        

 

Where Q is the battery bank nominal capacity.  

Where Pload shortage  is the load power shortage. The 

supercapacitor charge/discharge voltage (∆V) will be added 

to the DC bus voltage reference to force the supercapasitors 

to charge or discharge [25]. 

2.6. PI-type Fuzzy Logic Control Strategy  

 

This scheme is based on the combination of the rule- based 

fuzzy logic technique and linear PI controller [32-46]. Sim-

ilar to conventional PI controller, it has two control gains, 

but these gains are not constant and can be self-tuned to have 

better tracking performance, in facing fast input signals (“er-

ror” and “rate of change of error”) changes. Additionally, 

they can be tuned online for a better performance [13]. It can 

be employed in nonlinear systems, time-variant systems, 

and systems with large time constants [32, 33]. It does not 

need an exact mathematical model of the system [34] and 

has a better performance than classical PI controller [32]. 

PID-type and PI-type fuzzy logic controller are presented by 

authors for different applications, such as the active mag-

netic bearing system (control) or hybrid electric vehicles 

(speed control) [34,32, 35]. Taking into consideration the 

suitable performance of the PI-type fuzzy logic controller in 

reducing the steady state error to zero in addition to its ca-

pabilities discussed above, the structure that is shown in Fig. 

4 is proposed for the SOC control of the battery. The input 

signals of this strategy are “error” and “rate of change of 

error” and the output is the control signal (U), generated by 

the rule-based fuzzy logic control strategy. Generally, the 

Sugeno-type fuzzy controllers are faster and more reliable 

than the Mamdani-type fuzzy ones [34]. As a result, the 

Sugeno-type fuzzy inference system is more common for 

the PI-type fuzzy logic control strategy. Table 4 shows the 

fuzzy if- then rules, in which the rows colored in red show 

the desired performance of the rule based fuzzy controller 

during the transient stage. Moreover, the rows in black and 

blue show the desired performance during the settling state 

and the steady state, respectively [32]. Fig. 5 shows the 

membership functions and the surface of the fuzzy control-

ler. Linguistic values in Table 4, for outputs, are: NL= -1, 

NM= -0.5, PM=0.5, PL=1 The parameters of all the energy 

management strategies, discussed before, are shown in Ta-

ble 4. The energy management unit design requirements are 

shown in Table 5 

 

                   SOC                                                                 U (t)                                               PBattref
     _         Pfcref

                                                             
 

 +  

                            

 PLoad shortage      

 

                   SOCref                 e (t)     

 
     Fig. 4. PI-type fuzzy logic control strategy. 

 

Table 4. PI-type Fuzzy Logic Control Strategy Rules                   Table5.  Design Requirements 

  
  

 

  

                                                     

 
 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

3. Simulation Results and Discussion 

To investigate the performance of the energy control strate-

gies, two case studies are taken into account as follows:  

pulsed load under step changes in the PV system output 

power and random load and PV power.  

 

3.1. Pulsed load 
 

 

Parameter 

                 

              Value 

Pfcmin, Pfcmax,Pfcopt  (W)            0, 12544, 10285.7 

Poptdischarg, Pbattopt, Poptcharge (W)  1440, 960, -1440 

SOCmax, SOCmin (%)                    85, 50 

𝑉battnominal, 𝑉dcmin, 𝑉dcmax (V)      60, 218, .222 

Pcharg max , Pdischarg max  (W)                                            -2400, 4800 

If e(t)  is NL & ∆𝒆(𝒕) is NL   U(s)=NL  

If e(t)  is NL & ∆𝒆(𝒕) is NM   U(s)=NL 
If e(t)  is NL & ∆𝒆(𝒕) is L   U(s)=NL 
If e(t)  is NL & ∆𝒆(𝒕) is PM   U(s)=NM 

If e(t)  is NL & ∆𝒆(𝒕) is PL   U(s)=L 
If e(t)  is NM & ∆𝒆(𝒕) is NL   U(s)=NL 
If e(t)  is NM & ∆𝒆(𝒕) is NM   U(s)=NL 
If e(t)  is NM & ∆𝒆(𝒕) is L   U(s)=NM 
If e(t)  is NM & ∆𝒆(𝒕) is PM  U(s)=L 
If e(t)  is NM & ∆𝒆(𝒕) is PL  U(s)=PL 
If e(t)  is L & ∆𝒆(𝒕) is NL   U(s)=NL 
If e(t)  is L & ∆𝒆(𝒕) is NM   U(s)=NM 
If e(t)  is L & ∆𝒆(𝒕) is L   U(s)=L 
If e(t)  is L & ∆𝒆(𝒕) is PM   U(s)=PM 
If e(t)  is L & ∆𝒆(𝒕) is PL   U(s)=PL 
If e(t)  is PM & ∆𝒆(𝒕) is NL   U(s)=NL 
If e(t)  is PM & ∆𝒆(𝒕) is NM   U(s)=L 
If e(t)  is PM & ∆𝒆(𝒕) is L   U(s)=PM 
If e(t)  is PM & ∆𝒆(𝒕) is PM   U(s)=PL 
If e(t)  is PM & ∆𝒆(𝒕) is PL   U(s)=PL 
If e(t)  is PL & ∆𝒆(𝒕) is NL U(s)=L 
If e(t)  is PL & ∆𝒆(𝒕) is NM  U(s)=PM 
If e(t)  is PL & ∆𝒆(𝒕) is L  U(s)=PL 
If e(t)  is PL & ∆𝒆(𝒕) is PM   U(s)=PL 
If e(t)  is PL & ∆𝒆(𝒕) is PL   U(s)=PL 

Fuzzy Logic Control 

Strategy 

PI CONTROLLER 

 
 

d/dt 

 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
Yousef Allahvirdizadeh et al., Vol.7, No.3, 2017 
 

1501 

Fig. 6 shows the load and the PV power versus time, which 

are assumed to be the same for all the strategies, in the first 

scenario. The step changes in the PV/Load power profiles 

are selected such that investigate the hybrid system behavior 

when makes face to different operating states during a day. 

The validation of the approach, which is discussed before 

for designing the state machine control strategy and the rule-

based fuzzy logic energy management strategy, are shown 

in Figs. 7 and 8, for the microgrid that is shown in Fig.1. As 

observed, in the case of the state machine control strategy 

and the rule-based fuzzy logic energy management strategy, 

the fuel-cell follows the previously determined rules that 

aim  to

                                                                                  

     
                                 )a) 

 

 

                                 

 

 

 

 

 

 

                                  (b) 

 
 

 

 

 

 

 

 

 

                                    (c) 

       
                                     (d) 

Fig. 5. (a) Membership functions of Δe(t) (b) Membership 

functions of e(t) (c) output variable (d) The surface of the 

fuzzy controller. 

 

 
Fig. 6. Power (PV plant, Load) (W)  

 
keep the battery SOC within the normal range, with charg-

ing the battery bank when its SOC is lower than the SOCmin 

and discharging it              when its SOC is higher than 

the SOCmax. Fig. 9 shows the ANFIS-based energy manage-

ment strategy implementation that is similar to the perfor-

mance of the state machine control strategy, because the 

training, checking, and testing data is collected from the 

state machine control strategy.  Similar to the state machine 

control strategy, the ANFIS-based control goal is to keep the 

battery bank operation inside the boundary conditions 

(SOCmin and SOCmax). As observed in Figs. 7-9, during the 

second 15s, the PV generation equals the demanded power. 

As a result, the fuel-cell power reduces to its minimum 

amount and the battery power is almost zero when the initial 

battery SOC is normal or high. In this stage, the fuel-cell 

provides only the battery bank charging power if the storage 

bank starts with a low SOC and the PV power is lower or 

equal to the load power. In the case in which the PV power 

is higher than the demanded energy, the PV system is re-

sponsible of chagrining the battery bank when the battery 

SOC is low. Subsequently, the PV power is higher than the 

load power. Then, the surplus PV power is used to recharge 

the battery bank, during the third 15s. In this case, the switch 

S1 turns on if the extra power is higher than the battery bank       

optimal charging power. The electrolyzer absorbs the differ-

ence between the PV generation and the sum of the de-

manded and the battery charging power, to store it in the 

form of the hydrogen. In other words, charging the battery 

bank has priority to producing the hydrogen when the bat-

tery SOC is low or normal, in order to keep the battery at 

higher SOCs, which extends its lifetime. The PV additional 

power will be absorbed by the electrolyzer if the battery 

SOC is higher than the SOCmax, to use the free solar energy 

as much as possible and increase the battery useful lifespan 

by protecting it against overcharge. The hydrogen produc-

tion when the battery starts with a high SOC is shown in Fig. 

10. Then, the PV production decreases during the fourth 

15s. Then, the fuel-cell power increases to supply the energy 

demand shortage. The fuel-cell delivers its maximum power 
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during the fifth 15s, to meet the peak load power. Addition-

ally, the battery bank is discharged, to share the load power 

with the fuel-cell when the PV production is approximately 

zero In other words, keeping the balance between total 

power generation and consumption has priority to recharg-

ing the battery bank, when initial battery SOC is low (see 

Figs. 7 (a), 8 (a) and 9 (a) for the fifth 15s). Of course, this 

is not a significant problem, because it lasts only for the peak 

load time interval and the battery bank is recharged nor-

mally during the whole load profile. As observed in Figs. 7 

(b), 8 (b) and 9 (b), the fuel-cell aims to provide the energy 

demand shortage and keep the battery bank SOC within the 

normal range when the battery bank starts with a normal 

SOC. Therefore, the fuel-cell almost meets the load power, 

except during the states in which the storage bank works 

with its optimal discharge power or forced to discharge with 

a high discharge rate under high load demand intervals. 

Moreover, if the PV production exceeds the load demand, 

there is no way for the battery bank except charging. The 

battery bank is discharged with a slow rate to reach a nomi-

nal SOC when starts with a high SOC (see  

 

 
                                               (a)   

 

 
                                               (b(                

 
                                                 (c)  

Fig. 7. Validation of the state machine control approach. 

(a) Initial SOC=30%. (b) Initial SOC = 68%.  (c) Initial 

SOC =95%. 

 

 Figs. 7 (c), 8 (c) and 9 (c)). This means that the storage bank 

has higher priority than the fuel-cell for meeting the energy 

demand when it starts with a high SOC.   In the following, 

the load power decreases and the PV production is zero and 

then both of them is assumed to be fixed to observe settling 

of the battery SOC at the reference value in the case of the 

PI-type fuzzy logic control strategy. The PI-type fuzzy logic 

control strategy performance for different battery SOC ref-

erences is depicted in Fig. 11.  In the first case, the SOCref 

equals to 65% (see Fig.11 (a)). Then, the battery is dis-

charged faster to reach the preferred reference (except in the 
second and third 15s, where the battery is recharged, im-

posed by the PV plant). In the second case, the  SOCref is set 

to 67%. As observed, settling time is reduced, as expected. 

(see Fig.11 (b)). In the third case, 68.5% is selected for 

theSOCref, to observe the controller performance when the 

initial SOC is smaller than theSOCref. 

 

 

                                                (a)  

 
 

(b) 

 
                                                   (c) 

Fig. 8. Validation of the rule-based fuzzy logic strategy ap-

proach. (a) Initial SOC = 30%. (b) Initial SOC = 68%. 

SOC =95%. 
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As seen in Fig. 11 (c), the battery bank is recharged to reach 

68.5%. (except in the fifth and sixth 15s). Fig.11 shows that 

the PI type fuzzy logic control strategy charges or dis-

charges the battery bank such that its SOC approaches the 

desired reference unless the PV power or the load demand 

impose other conditions that postpones the settling time. 

The ECMS performance in different initial battery SOCs is 

shown in Fig. 12. Investigating the equivalent factor (EQ1), 

expressed in section 2.4, shows that the ECMS tends to 

maintain the battery SOC around the “0.5 ( SOCmax + 

SOCmin)” (It is equal to 67.5% in this paper),  which pro-

vides a potential reference for the battery SOC. The simula-

tion results in Fig.12 confirm this conclusion, in which the 

battery charges when starts with a low SOC and discharges 

with the maximum rate when starts with a high SOC (see 

Fig.12 (a) and (c)).  Moreover, the battery attempts to work 

around 67.5% if starts to operate with a normal SOC. The 

EEMS implementation is shown in Fig. 13. The battery dis-

charges faster to reach the minimum  

 

 

 

 
                                               (a) 

 
  (b) 

 
                                             (c) 

Fig. 9. Validation of the ANFIS-based training. (a) Initial 

SOC =30%. (b) Initial SOC = 68%. (c) Initial SOC = 95%. 
 

limit if it’s initial SOC is higher than theSOCmin, and 

charges with the optimum rate to reach the minimum limit 

when it starts with a lower SOC (see Fig. 13 (a), (c) and (d)). 

Starting the battery bank with the SOCmin (It is equal to 50% 

in this paper), leads to keep the battery SOC at the SOCmin 

(see Fig. 13 (b)). Therefore, the fuel-cell meets the load de-

mand shortage. Consequently, setting higher values for 

theSOCmin, leads to employing the battery bank at higher 

SOCs. In other words, the SOCmin is a potential reference 

for the battery SOC, in this strategy. It can be concluded that 

there is a direct or indirect control on the battery SOC in the 

PI type fuzzy logic control strategy, the ECMS, and the 

EEMS. Then, it is essential to determine an approach that 

controls the battery SOC, the rate of charge and discharge 

of the battery bank at the design stage of the state machine 

control, the ANFIS-based energy management strategy, and 

the rule based fuzzy logic control, as considered in this pa-

per.  

 

 
 

Fig. 10. Hydrogen production (mol/s) for SOC > 90% in 

the case of the rule based fuzzy logic control strategy 

 

 

 

 

 
                                               (a) 
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                                              (b) 

 
                                               (c) 

Fig. 11. PI-type Fuzzy logic control strategy performance  

for (a) SOCref =65% (b) SOCref =67%. (c) SOCref =68.5% 

 

 
 

 

 

 

                     

 
                                              (a) 

 
                                             (b) 

 
(c) 

Fig. 12. Validation of the ECMS. (a) Initial SOC = 30%. 

(b) Initial SOC = 45%. (c) Initial SOC = 95%. 

 

Therefore, the data required for the design of the ANFIS-

based energy management strategy is gathered from the 

state machine control in order to integrate the state machine 

control approach, which is discussed in section 2.2, into the 

ANFIS-based energy management strategy. The Summary 

of the results, obtained by each energy management strat-

egy, is shown in Table 6. Note that the most hydrogen con-

suming energy management strategy is the state machine 

control (174.95lit) and the least one is the EEMS (50.49 lit). 

It is obvious that the EEMS use more battery energy to meet 

the load demand shortage. (Compare the final SOCs, in the 

case of the EEMS and the state machine control strategy in 

Table6). 

 
3.2. Random load and PV power 

 

In this case, the energy management unit perfor-

mance under a variable load for a residential home with the 

peak 

 

 

 

         
                                       (a) 

 

                                            (b) 
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                                            (c) 

 

                                        (d) 

Fig. 13. Validation of the EEMS. (a) Initial SOC = 30%. 

(b) Initial SOC = 50%. (c) Initial SOC = 68%. (d) Initial 

SOC = 95%. 

 

 

 
 

24 hours 

Fig. 14. Real Power (PV plant, Load) (W) 

 

of 9500 W and a PV profile with the peak of 9500 W, which 

are ruled during 180 seconds of simulation as shown in 

Fig.14, is evaluated. Additionally, a random power of 1000 

W is added to both of the load and PV power profiles The 

initial battery SOC is considered 68%. The overall behavior 

of the control strategies are similar to which is obtained in 

the case of pulsed loads.  The state machine control, the rule 

based fuzzy logic control and the ANFIS based control strat-

egy aim to maintain the battery SOC around the initial SOC.  

While the EEMS discharges the battery faster to reach the 

SOCmin , the ECMS works around the 0.5 

(SOCmax+SOCmin)” . Finally, the PI type fuzzy logic control 

strategy keeps the battery SOC at the reference command. 

Then, a summary of the results obtained from the random 

load and PV power is gathered in Table 7. In the case of 

random PV/load profiles, while the EEMS is still the least 

hydrogen consumption strategy, the rule-based fuzzy logic 

control strategy hydrogen consumption is higher than the 

state machine control. Furthermore, tables 6 and 7 shows 

that the most fuel (and fuel-cell) efficient strategy is the 

EEMS under pulsed and random loads. As seen in tables 6 

and 7, the performance of the ANFIS-based control strategy 

is similar to the state machine control in both cases. Differ-

ent energy management strategies fulfill different objec-

tives. For instance, if the hydrogen minimization has higher 

priority to the battery life loss minimization, the EEMS can 

be employed to use the battery energy in the first place. If 

the battery life loss minimization has higher priority to the 

fuel consumption, the state machine control and the rule 

based fuzzy logic control strategy can be employed in the 

case of pulsed loads and random loads, respectively, to keep 

the battery energy reserved for subsequent use or charge the 

battery to 

 

 

                                                                                                     

Table 6.Summary of the results obtained by Each Energy Management Strategy for Pulsed load and PV power 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Summary of the results obtained by Each Energy Management Strategy for random load and PV power 

            Initial SOC                       68%  

                  Indicator 

EMS 

Pfc avreage Fuel 

consumption 

(gr-lit) 

Fuel-cell 

Efficiency 

(%) 

Fuel Effi-

ciency 

(joule/litre) 

Final 

SOC 

(%) 

Rule-based fuzzy logic 4551.3 14.22-159.94 55.18 5122 67.54 

State Machine Control   4936.6 15.55-174.95 54.7 5079.1 67.94 

PI-type Fuzzy Logic Control 4149.3 12.97-145.92 54.7 4269.1 66.99 

ECMS 3849.7 11.57-130.11 56.01 5325.9 66.7 

EEMS 1585.1 4.49-50.49 59.4 5651.2 64.33 

ANFIS-based Control  4891.1 15.44-173.66 54.77 5069.7 67.88 
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4. Summary  

Remote (or rural) area electrification is one of the main 

concerns, especially in developing countries. This paper 

presents a detailed investigation of six energy control strat-

egies (the state machine control strategy, the rule- based 

fuzzy logic control strategy, the ANFIS-based control strat-

egy, the ECMS, the EEMS and the PI-type fuzzy logic con-

trol strategy) for a small-scale standalone microgrid, in a re-

mote area. The proposed microgrid includes the solar (PV) 

panels, the fuel-cell stack, the batteries, the supercapasitors, 

the electrolyzer unit, the DC/DC, and DC/AC converters. 

An effective approach is used to design the state machine 

control strategy and the rule-based fuzzy logic control strat-

egy. In this approach, the battery state of charge is divided 

into three regions: low, normal and high. If the battery starts 

with a low (initial) SOC, the fuel-cell will try to recharge it 

and provide the (load) power shortage, which is not met by 

the PV power generation. If the battery starts with a normal 

SOC, the fuel-cell cell will keep the battery SOC within the 

normal range and meet the energy demand shortage, and fi-

nally, if the battery starts with a high SOC, the storage bank 

will be discharged with a slow rate and the fuel-cell will 

supply the energy demand shortage, which is not satisfied 

by the PV system and the battery. The additional power, 

generated by the PV system, is used to recharge the battery 

bank and produce hydrogen. Aiming to design an efficient 

ANFIS-based control scheme, almost 9500 training, check-

ing and testing data have been collected through the state 

machine control strategy implementation in different (ini-

tial) battery SOC cases with random PV and load power pro-

files. Two cost function based strategies are discussed. One 

of them is common in hybrid vehicles energy management 

systems (ECMS). The other one (EEMS) is proposed in [11] 

for a hybrid emergency power system. The results show that 

both of them have acceptable performance in microgrid ap-

plication. Also, a different PI energy management strategy 

is used, to overcome some of the drawbacks of conventional 

PI controllers. All the strategies have been investigated con-

sidering different features, such as the battery SOC, design 

aspects, simplicity, economy, accuracy and so on. Addition-

ally, the performances of all the strategies have been com-

pared through simulation studies. Factors such as the stack 

efficiency, the hydrogen consumption, the fuel efficiency 

and the battery state of charge have been used for compari-

son. The simulation results showed that all the strategies are 

successful in keeping the DC bus voltage variations below 

2%. Two scenarios (pulsed and random loads) have been 

considered to evaluate the performance of the energy man-

agement strategies for random PV and load profiles. Taking 

into account the fuel consumption, the EEMS is the least 

hydrogen consuming and the most fuel (and fuel-cell) effi-

cient energy management strategy in both scenarios.  
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Appendix 
 

Table8. Hybrid re-

newable system specification 
 

 

 

 

 

 

                                                                                                                                                

                                                                                                                                                
 

NOMENCLATURE 

PV 
 

Photovoltaic 

ECMS Equivalent Consumption Minimization Strategy   

EEMS External Energy Maximization Strategy 

SOC (Battery) State of charge                                              

SOCmax Maximum State of charge (%)                               

SOCref State of charge Reference (%)                               

SOCmin Minimum State of charge (%) 

Vdc DC bus voltage (v) 

V dc ref
 DC bus reference voltage (V) 

Vdcmin Minimum DC bus voltage (V)  

Vdcmax Maximum DC bus voltage (V) 

Vdc,L   voltage at the low side of the battery converter (V)       

ANFIS Adaptive-Neuro Fuzzy Inference System             

Pload Load power (W)  

PI Proportional–Integral controller                       

Pfcref
 Fuel-cell reference power(W) 

Pfc Fuel-cell  power(W)       

Pfcmin Minimum fuel-cell power (W)                               

Pfcmax Maximum fuel-cell power   (W)   

Pfcopt Fuel-cell optimum power (W) 

Vbattnominal Nominal battery voltage (V) 

Pdischarg max  Maximum battery discharge power (W)          

Poptcharg Battery charge power (W) 

Pcharg max  Maximum battery charge power (W)                

Pbattopt Battery optimum power (W) 

Pbattref
 Battery reference power (W)                                          

Poptdischarg Battery discharge power (W)    

Pbatt Battery   power (W)                                             

PPV PV plant power (W)                                                                        

Pfc avreage Fuel-cell average power (W) 

PV System Supercapacitors Pack 

PV cell open-circuit voltage (V)                                                  21.3 Number of series supercapacitors                                   128 

PV cell Short-circuit current (A)                                                  3.11 Number of parallel supercapacitors                                   1 

Number of solar cells in series                                                       20 Total capacitance (F)                                                     23.5 

Number of solar cells in parallel                                                    3 Nominal Voltage (V)                                                      225 

Fuel-cell Stack Battery system 

Number of cells                                                                                         65 Nominal Voltage (V                                                           60  

Nominal stack efficiency (%)                                                                    55 Rated Capacity (Ah)                                                           40 

Nominal Air flow rate (lpm)                                                                    300 Initial State-Of-Charge                                                       65 

Nominal supply pressure [Fuel (bar), Air (bar)]                                [1.5, 1] 

Fuel-cell boost converter [Inductance (H), Capacitance (mF), Efficiency 

(%), output voltage (V)]                                                 [0.01, 800, 93, 220]                                                                                                                                             

Nominal composition (%) [H2 O2 H2O (Air )]                      [99.95, 21, 1] 

Battery buck converter [Inductance (H), Capacitance (mF), 

Efficiency (%), output voltage (v)]     [0.01, 800, 88, 67] 

Battery boost converter [Inductance (H), Capacitance (mF), 

Efficiency (%), output voltage (v)]    [0.01, 800, 88, 220]                                              

Nominal Voltage (V)                                                          60 


