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Abstract-Fault diagnosis is the best discipline to control the operation and maintenance costs of the wind turbine system. 

However, the fault diagnosis of wind turbine finds difficulties with the variation of wind speed and electrical energy (generator 

torque). 

In this work, the proposed fault diagnosis approach is based on the Feature set algorithm, manifold learning and the Support 

Vector Machine classifier. First, the construction of the feature set is very important step, with the high dimension after 

application the MAED (Manifold Adaptive Experimental Design) algorithm on the data set. Moreover, the NPE 

(Neighborhood Preserving Embedding) manifold learning algorithm is applied for directional reduction of feature set by the 

eigenvectors; it is easy to use as the input for the last step. Finally, the low dimensions of eigenvectors are exploited by the 

(SVM) Support Vector Machine classifier for recognition fault and making the maintenance decision. 

This approach is implanted on the faults of the benchmark wind turbine and gives the best performance. 

Keywords: Fault diagnosis, Wind turbine, Data-based diagnosis, MAED algorithm, NPE algorithm, SVM classifier. 

 

1. Introduction 

The wind turbine is the system for the power energy; it is 

renewable energy, that system contains different parts 

(blades, gearbox, tower…). 

During its work, it has occurrence of several faults that 

influence the maintenance costs and the best performance of 

the wind turbine. 

For these reasons, the faults diagnosis system is very 

important to supervise the parts of the system. An approach 

will be proposed to improve the rate of performance. So 

there are two main methods of fault diagnosis, the first is 

model-based diagnosis, that requires the best comprehension 

of physical model of the system, but the second is data-based 

diagnosis, that means the historical data are very important to 

use with the mathematical methods for the pattern 

recognition. 

In literature there are a lot of propositions to solve these 

problems, as well as the author [1] proposingan algorithm 

based on the empirical mode decomposition and energy 

separation for the fault diagnosis of planetary gearbox. It 

detects and locates the wear and chipping faults for the gear 

of planetary gearbox,also the Adaptive Optimal Kernel 

(AOK) used for the time frequency analysis to indicate the 

frequency characteristic of non-stationary signals [2, 3], 

where the AOK extracts the impulses induced by gear faults 

under time-varying running conditions. 

In [4], authors presented data mining approaches to 

monitor the blade pitch based on genetic algorithm; they give 

the best accuracy and were selected to perform prediction at 

different time stamps. In [5], the monitoring approach based 

on alarms of wind turbine SCADA (Supervisory Control 

And Data Acquisition) is proposed, it gives the alarm data 

requiring little storage capacity and provides the rich 

information of condition monitoring. 

The auto-regressive model is applied by [6] for 

diagnosing the very complex high-power planetary gearbox 

of wind turbine, this model is very quick, technically simple, 

robust and intuitive. In [7], the authors proposed the 
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calculated distance using as a fault indicator to diagnose 

shaft crack, it demonstrated the use of a full lifetime gear 

shaft. 

Among the 126 articles found in Web of Science, the 

database of ISI Thomson, the most recent and related to this 

work are chosen for state of the art (Table1). 

Table 1.State of the art of diagnosis of wind turbine system 

Year Authors content remarks 

2016 
Hu, Bingbing; Li, Bing [8] 

 

Proposed an approach Multiscale noise tuning 

stochastic resonance (MSTSR) based on dual-tree 
complex wavelet transform (DTCWT) for 

diagnosis the gearbox bearing faults. 

Extracts the fault features of 
weak fault signatures and 

gives the best performance. 

2016 
Chacon, Juan Luis 
Ferrando; Andicoberry, 

EstefaniaArtigao; 
Kappatos, Vassilios; et 

al.[9] 

Presented an approach based on the Envelope 

analysis of acoustic emission signature of the 

gearbox wind turbine. 

Improves the detection fault 

step of the gearbox wind 

turbine. 

2016 
Qiu, Yingning; Feng, 

Yanhui; Sun, Juan; et 
al.[10] 

Presented an approach for diagnosis the gearbox 

and generator of wind turbine based on the 
thermophysics model 

Is efficient to indicate the 

gearbox degradation 

2016 

Yang, Zhi-Xin; Wang, 

Xian-Bo; Zhong, Jian-Hua 

[11] 

Proposed an approach based on the  multiple 

extreme learning machines (ELM) for diagnosis the 
fault of wind turbine generator 

Gives the best recognition 

accuracy in multiple faults. 

2016 
Mollasalehi, Ehsan; Sun, 

Qiao; Wood, David [12] 

Proposed demodulation technique approach based 
on calculating the energy band by the wavelet 

packet for the diagnosis of the bearing generator 

Gives the best result of the 
localization for the outer race 

bearing fault. 

 

From literature, the most used approach for fault 

diagnosis of vibration wind turbine (gearbox, generator …) is 

based on three main steps [11], the first is the signal 

processing of vibration signal, the second is the directional 

reduction and the last is the recognition fault. 

In proposed fault diagnosis approach, the structure and 

number of steps are the same, the first step is focused on 

another concept and it is based on the selection of system 

parameters and the extraction of the feature set. 

The proposed approach of fault diagnosis wind turbine 

system is based on the historical data. First, vectors with high 

dimension should be constructed for each state, using the 

different parameters of wind turbine. After that, these 

vectorsare exploited to apply the reduction dimension 

methods, to make easy the exploitation of these vectors with 

low dimensions using the pattern recognition classifier to 

diagnosis the types of defaults. 

In this work, a novel MAED algorithm is selected for the 

feature set with the high performance [13] applied on text 

categorization. 

There are a lot of reduction dimension methods, these 

methods were divided into two types: the first type is 

classical methods, like the Multidimensional Scaling (MDS) 

[14], and the Independent Component Analysis (ICA) [15], 

but the second one is recent method and based on the 

manifold learning, like the Locally Linear Embedding (LLE) 

[16] and Locality Preserving Projection (LPP) [17], so the 

NPE algorithm is used for directional reduction in this work. 

After the step of reduction of dimension, the vectors are 

used as input for pattern recognition. 

There are a lot of learning machines for pattern 

recognition, as common the SVM using the statistical theory 

[18]. 

The SVM has high performance of classification; it uses 

the kernel function [19]. 

This work is organized as follows: in section 2, the 

MAED algorithm, the reduction dimension method and the 

SVM classifier are presented. Section 3 is reserved to 

describe the wind turbine benchmark model and its faults. 

The proposed approach of fault diagnosis is described in 

section 4. After that, the fault diagnosis model is applied to 

benchmark model and discussion of results in section 5, and 

finally a conclusion. 

2. Theoretical Background 

2.1. The Manifold Adaptive Experimental Design (MAED) 

Algorithm 

In the first time, the feature set selects the sample data to 

present all the data, among these references [20, 21, 22] 

described the categorization of feature selection. The MAED 

algorithm is summarized as follows [13]: 

2.1.1. Construct the manifold adaptive kernel 

The G set of nearest neighbor is constructed for each  xi 
data point and find its k nearest neighbors, denoted N( xi), 
where an edge is put between its neighbors and data point  xi. 
The weight matrix on the graph is: 
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Wij = {
1    if xi ∈  N( xi) or  xj ∈ N( xj),

 0    otherwise .                                  
               (1) 

 

The Laplacian graph is calculate by L =  D −W 

So the diagonal matrix is D, where the columns are the 

entries (or row, since W is symmetric) and the sums of W, 

   Dii = ∑ Wjij  

Put the K the kernel of independent data, as the linear or 

Gaussian kernel, related with the kernel matrix K. 

That is, 𝐾𝑖𝑗 = K(𝑥𝑖 , 𝑥𝑗)  

The i-thcolumn vector of K is denoted 𝑘𝑖, and the matrix 

of manifold adaptive kernel 𝐾𝑀 is calculated as follows: 

𝐾𝑀,𝑖𝑗 = 𝐾𝑀(𝑥𝑖 , 𝑥𝑗) = 𝐾𝑖𝑗 − γ𝑘𝑖
T(I + LK)−1L𝑘𝑗              (2) 

 

2.1.2. Solve manifold adaptive active learning 

optimization problem. 

Put the 𝑢𝑖  the i-th row (or column, since 𝐾𝑀 is 

symmetric) vector of 𝐾𝑀 . In the beginning αi,j = 1  , and 

computing the iterative until convergence. 

𝛽𝑗 = √
∑ αi,j

2n
i=1

γ
  , j = 1, … , n.                                               (3) 

 

αi = (diag(β)−1 + 𝐾𝑀)
−1𝑢𝑖  , i = 1, … , n.                            (4) 

 

2.1.3. Data selection 

The data points are rankedin descending order according 

to𝛽𝑗(j = 1,……… , n), and the top K data points are selected. 

2.2. The Neighborhood Preserving Embedding (NPE) 

algorithm 

The NPE algorithm was developed by several authors 

[23], they used the moving window technique based on the 

dynamic multiway neighborhood preserving embedding to 

monitor the fed-batch process, and [24] presented the time 

neighborhood preserving embedding for fault detecting of 

dynamic process. 

The orthogonal neighborhood preserving embedding and 

Shannon wavelet support vector machine are used for fault 

diagnosis of wind turbine transmission system by the author 

[25]. 

In this Section, a linear directional reduction algorithm is 

presented, called the NPE [26]. 

2.2.1. The linear directional reduction problem 

The problem of directional reduction is to find a 

transformation matrix A, which transforms a set of points 

x1, x2, … , x𝑚 ∈ ℝnto a set of points y1, y2, … , y𝑚 ∈ ℝd (d <

< 𝑛) , saving the same number of data m, such as 

yi”represents”xi, and yi = A
Txi. 

In the special case, this method is applicable where 

x1, x2, … , x𝑚 ∈ 𝑀 and 𝑀is a nonlinear manifold embedded in 

ℝn. 

2.2.2. The algorithm NPE 

The procedure of the NPE is formally as follows: 

Constructing an adjacency graph: Put 𝐺 a graph with 𝑚 

nodes, where each data point x𝑖 corresponds to thei-th node. 

➢ 𝐾nearest neighbors (KNN): Put an edge a directly 

from node 𝑖to 𝑗, if x𝑗is among the 𝐾nearest neighbors of  x𝑖. 

➢ ∈ −neighborhood: if  ‖Xi − Xj‖
2
<∈ , Put an edge 

between nodes iand  j. 

The complexity of computational is a major concern, 

which can switch to∈ neighborhood. The edge from 𝑖to 𝑗 is 

denoted𝑖~𝑗. 

Computing the weights: the weights are computed on the 

edges, the weight matrix is denoted 𝑊, this matrix has Wij of 

the edge weight from node 𝑖  to node 𝑗 , and equal zero if 

inexistence of edge. The minimizing of following objective 

function can give the weights on the edges. 

min∑‖x𝑖 −∑W𝑖𝑗x𝑗
𝑗

‖

2

𝑖

                                                       (5) 

 

with constraints∑ W𝑖𝑗 = 1, 𝑗 = 1,2, … ,𝑚𝑗  

Computing the Projections: The linear projections are 

computed to solve the problem of generalized eigenvector: 

𝑋𝑀𝑋𝑇𝒂 =  𝛾𝑋𝑋𝑇𝒂                                                                    (6) 
 

Where 

X =  (x1  , … , xm) , M =  (I − W)T (I −W) , and I =
diag( 1, … ,1) 

The solutions of equation (1) is the column 

vectors 𝑎0 , 𝑎1 , … , 𝑎𝑙−1 , this order is according to their 

eigenvalues, 𝛾0 < 𝛾1⋯ < 𝛾𝑙−1 . Thus, the embedding is as 

follows: 

𝑥𝑖  →   𝑦𝑖 = 𝐴𝑇𝑥𝑖  ,   𝐴 =  (𝑎0 , 𝑎1 , … , 𝑎𝑙−1)                (7) 

Where A is a matrix of 𝑛×𝑑 dimension, and   y𝑖  is a d-

dimensional vector 

2.3. The Support Vector Machine classifier (SVM)  

The SVM classifier was developed by several authors, 

[27] presented an approach based on multi-class fuzzy 

support vector machine (FSVM) classifier for fault diagnosis 

of wind turbine, it has better performance of recognition 

accuracy when applied on the both experimental and test rig. 

[25] proposed a new approach based on manifold learning 

and Shannon wavelet support vector machine for fault 

diagnosis of wind turbine transmission system, this approach 
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Margin 

Support vectors 

𝑊𝑇   Z + b = −1 𝑊𝑇   Z + b = 1 

𝑊𝑇   Z + b = 0 

𝐶𝑛 = 1 𝐶𝑛 = −1 

𝐻1  𝐻2  

𝐻  

improves the recognition accuracy (more than 92%) of fault 

diagnosis of the gearbox bearings. [28] proposed a novel 

hybrid algorithm for fault diagnosis of rotary kiln based on a 

binary ant colony (BACO) and the SVM, this algorithm 

gives the optimal SVM parameters and the best classification 

accuracy. 

The approach is an effective fault diagnosis method for 

WT, which has a better performance and can achieve higher 

diagnosis accuracy. 

The SVM classifier created the hyperplanes and is used 

as the decision boundary, with the maximal margin between 

these hyperplanes. 

Figure 1 presented two samples of data, where H is 

optimal hyperplane and for each sample 1, 2, is 

correspondingH1 , H2 hyperplanes respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.Conceptual schema of the linear support vector 

machine. 

 

Mathematically, there are the training samples Zn ,n =
1,2, … , Ns, and a label of each sample is Cn ∈ {1, −1}, thus 

the linear classifier is g(Z) = WTZ + b. 

{
𝑊𝑇𝑍 + 𝑏 ≥ 1     𝑖𝑓 𝐶𝑛 = 1

𝑊𝑇𝑍 + 𝑏 ≤ −1     𝑖𝑓 𝐶𝑛 = −1
                                               (8) 

The equation (8) can be written as follows: 

Cn(W
TZ + b) ≥ 1                                                                       (9) 

 

Let W be the gradient vectorg(Z). After that there is the 

inversely proportional between the margin square and  

‖W‖
2
= WTW                                                                           (10) 

 

The minimization of ‖W‖
2
 is found by maximizing the 

margin. 

The constraints of equation (8) are incorporated by the 

Lagrange multipliers to minimize function (11). 

L =
1

2
‖W‖

2
+ ∑αn[Cn(W

TZ + b) − 1]

Ns

n=1

 , αn ≥ 0       (11)  

The partial of L equation with W and b is derivated to 

zero results, given as (12): 

{
 
 

 
 
W =∑αnCnZn

Ns

n=1

∑Cn αn = 0

Ns

n=1

                                                                              (12) 

The minimization of L equation means that W and b are 

respected, on the other hand αnis respected for maximizingL 

equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.Layer by layer classification model of SVM [25]. 

 

This is a quadratic optimization problem, after 

optimization,αn are used in the equation (11) to find. 

The typical problems have the sparse solution with many 

αn  equal zero, but the samples Znhave αn > 0 , called the 

support vectors machine. 

One of the solutions of the multiclass classification used 

the N-1 SVM classifiers to classify N types of fault that 

make layer by layer [25], as presented in Figure 2. 

 

 

 

 

 

 

 

SVM1 

Patten 1,2,…. N 

Patten 1 SVM2 

Patten 2,3,…. N 

Patten 2 Patten 3,4,…. N 

… 

SVMN-1 

Patten N-1 Patten N 
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3. Wind Turbine Benchmark and its Faults 

3.1. Benchmark model 

The benchmark model of wind turbine is based on three 

blades, horizontal axial and variable speed with a full 

converter, and an output power of 4.8 Mw [29]. 

 

 

 

 

 

 

 

 

Fig. 3. Operate zones of wind turbine (Power curve) [29] 

This model is composed by five parts: Blades, drive train, 

generator, converter, and controller. 

Figure3 shows four operate zones: the first is start-up, 

the second is crowned, the third is constant, and the last is no 

power production. This work focuses on zones 2 and 3. 

 

 

 

 

 

 

 

 

 

Fig. 4. System overview of the wind turbine benchmark 

model [29]. 

Wind turbine generated the electrical energy from the 

wind power. There are two kinds of wind turbines: a vertical 

axis, and a horizontal axis. 

When the wind turns, the wind turbine blades transfer 

the movement to the rotor shaft, a generator converts the 

mechanical energy to electrical energy after introducing the 

drive train. 

The conversion from wind energy to mechanical energy 

is controlled by pitching the blades or by controlling the 

rotational speed of the turbine relative to the wind speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.Conceptual schema of components of the wind 

turbine. 

The structure of model is presented in Figure4. Table 2 

describes its symbols: 

Table 2.Description of the symbols of the benchmark [29] 

3.2. Faults of wind turbine benchmark 

The wind turbine benchmark has many types of faults, as 

the actuators, the system, and sensors. The faults 1 to 5 do 

not concern actuators. 

In this work, it was focused on actuators and the system 

faults: 

➢ Fault 6 represented by a changed pitch system 

response in pitch actuator 2 as a result of high air content in 

oil, in period of2900s-3000s.  

➢ Fault 7represented by a changed pitch system 

response in pitch actuator 3 as a result of low pressure, in 

period of 3400s-3500s.  

Sym Description Sym Description 

𝑣𝑤 wind speed 𝛽𝑚 Measured pitch 

angles 

𝜏𝑟 Rotor torque 𝜔𝑟 Rotor speed 

𝜏𝑔 Generator torque 𝜔𝑟,𝑚 Measured rotor 

speed 

𝜏𝑔,𝑚 Measured generator 

torque 
𝜔𝑔 Generator speed 

𝜏𝑔,𝑟 generator torque 

reference 
𝜔𝑔,𝑚 Measured 

generator 

speed 

𝜏𝑤,𝑚 Measured wind 

torque 
𝑃𝑔 Measured 

generated 

electrical 

power 

𝛽𝑟 pitch angle control 

reference 

𝑃𝑟  Power reference 

𝜏𝑔  

𝜏𝑟  

𝑃𝑔  

Controller 

Drive 

train 

Generator& 

Convertor 

Blade& 

pitch system 

𝑣𝑤  

𝜏𝑔,𝑚, 𝜔𝑔,𝑚, 𝑃𝑔 
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➢ Fault 8 represented by an offset in converter torque 

control, in period of 3800s-3900s. 

➢ Fault 9 represented by a Changed dynamics drive 

train, in period of 4000s-4100s. 

Table 3 summarizes these faults and their duration 

 

 

 

 

Table 3. Faults of benchmark model [29] 

No. Description Duration 

Fault6 Changed pitch system 

response pitch actuator 2 

- high air content in oil 

2900-3000 sec. 

Fault7 Changed pitch system 

response pitch actuator 3 

– low pressure 

3400-3500 sec. 

Fault8 Offset in converter 

torque control 

3800-3900 sec. 

Fault9 Changed dynamics drive 

train 

4000-4100 sec. 

Table 4.Used data [29] 

 vw (m/s) β
r
 (deg) β

1m
 

(deg) 

β
2m

 

(deg) 

β
3m

 

(deg) 

ωr 

(rad/s) 

ωg 

(rad/s) 

τr 

(x106Nm) 

τg (x104 

Nm) 

Pg 

(x106W) 

Fault 6 8.41-

18.13 

(-2)- 

13.94 

(-3.94)-
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(-3.50)-
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(-3.74)-

12.97 

0-1 136.63-

164.43 

1.22-6.60 2.26-

3.30 
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4.86 
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(-2)- 
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Figure 6 represents the benchmark data of wind speed 

and electrical energy. 
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Fig. 6.Benchmark data of wind speed and electrical energy 

respectively: a) Fault 6, b) Fault 7, c) Fault 8, d) Fault 9, e) 

Normal state. 

The Figures 6.a, 6.b, 6.c, 6.d and 6.e are presented the 

data of wind speed and electrical energy respectively for four 

kinds of fault and normal state, the values of wind speed are 

between 7.65 to 25.50 m/s corresponding to the generated 

power of zone 3 of Figure 3 (Power curve). 

4. The fault diagnosis approach 

State vector: is a feature set of the system parameters 

presenting the state of system on time variation which are 

ordered in a column or row matrix. 

The wind turbine system is characterized by very 

important two parameters, the power energy and the wind 

speed, so this approach is based on the power energy as key 

parameter. 

Figure 7 presents the proposed approach of fault 

diagnosis in this work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.Conceptual schema of Implementation process of fault 

diagnosis for the proposed approach. 

Historic of data 

Select feature set (by 

K-means/ MAED) 

Reduction dimensions (by the manifold 

learning) 

Test 

samples 

Pattern recognition by SVM 

Fault patterns 

Wind turbine system (collect the data) 

Classification of data 

according to power 

energy 

First step 

Second step 

Last step 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
A.Soussa et al., Vol.7, No.2, 2017 

765 
 

-124

-122

-120

-118

-116

-98

-96

-94

-92

-90
-142.5

-142

-141.5

-141

-140.5

-140

 

 

normal

fault6

fault7

fault8

fault9

test

-90

-85

-80

-75

-70

-62
-61.5

-61
-60.5

-60
-59.5

-59
-139.2

-139

-138.8

-138.6

-138.4

-138.2

-138

 

 

normal

fault6

fault7

fault8

fault9

test

-163
-162

-161
-160

-159
-158

-157
-156

50

55

60

65

70

75

77

78

79

80

 

 

normal

fault6

fault7

fault8

fault9

test

182
183

184
185

186
187

188

-92

-91

-90

-89

-88
-20

-19

-18

-17

-16

 

 

normal

fault6

fault7

fault8

fault9

test

The main steps of fault diagnosis approach (data-based 

model) are: 

➢ The first step is the extraction of feature set from a 

huge historical data, so the best feature should be extracted 

from sample representing this data, with the K-means then 

the MAED algorithm. 

➢ The second step is the reduction of dimension of the 

state vector containing parameters of feature set (output of 

first step), because the dimension of feature set is big 

(superior to three). To be exploited easily, it should be 

reduced. 

This approach uses the LPP algorithm in the first time 

then the NPE algorithm. 

➢ The last step is pattern recognition by SVM 

classifier and finding fault patterns. 

5. Faults Diagnosis and Obtained Results 

5.1. Application of the proposed fault diagnosis approach on 

benchmark model 

This approach is used to diagnosis the normal state and 

four kinds of faults (fault 6, fault 7, fault 8, fault 9), so the 

state vector is constructed as showed in (13): 

V = [vw , βr , β1m , β2m , β3m ,ωr ,ωg , τr , τg , Pg]               (13) 

Where the feature set has ten elements for each type and 

test samples too. 

In the first time, the k-means was applied on 1000 

vectors to obtain 10 elements for each type and a matrix of 

60x10. After reduction of the last matrix (so the LPP is 

characterized by nearest neighbors k=3, Heat kernel t=3 and 

dimension d=3), another matrix of 60x3 will be obtained. 

In this section, there are two comparisons: 

The first comparison is between: 

➢ Over the state vector in same time (k=10). 

➢ And over the wind speed (important factor with 

k=10), and then affect the other parameters to each element 

of state vector, finally the k-means was applied again over 

new matrix (k=1). 

Figure 8.a shows that feature set is not separated from 

each other and test samples are very scattered in the cases of 

fault 7 and fault 8. 

But in figure 8.b, there is separation from each other, 

which means that the wind speed is the key factor for the 

wind turbine system. 
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Fig. 8. Low dimensional feature set with LPP: (a)- k-means 

applied to all state vector, (b)- k-means applied to wind 

speed. 

In second time, a comparison between LPP and LPP-

SVD was done, then linear SVM for fault classification was 

applied with c=1. 

➢ Outputs of LPP are eigenvectors with (10x6), just 

the first 3 elements were used among 6 which are with 

dimensions (10x3) only, so the low dimensions were 

obtained (60x10)x(10x3)=(60x3), 

➢ But here, the SVD was applied to eigenvectors with 

(10x6), so the dimension of eigenvectors is reduced (outputs 

of LPP), the low dimension is obtained from 

(10x6)x(6x3)=(10x3). Finally, the new low dimension is 

(60x10)x(10x3)=(60x3). 
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Fig. 9. Low dimensional of feature set with LPP-SVD: (a) 

fault6, (b) fault7, (c) fault8, (d) fault9 and (e) Normal state. 

As shown in Figure 9 and Figure 8.b, the elements of 

feature set are well separated from each other, and it gives 

for the test samples of fault 8 recognition approximately 

equal to 90% (9/10 samples), contrarily to a recognition of 

70% in the first time (LPP only). But the normal state 

percentage is 100% (good performance). Also there is 

difficulty in the fault 9 because its performance is low related 

to the other results. 

Table 5summarizes and compares the results. 

Table 5. Comparison of the fault diagnosis results using LPP 

and LPP-SVD 

Recognition 

Accuracy 
Normal 

Fault  

6 

Fault  

7 

Fault 

 8 

Fault 

 9 
Average 

LPP 70% 70% 50% 70% 50% 62% 

LPP-SVD 100% 90% 70% 90% 60% 82% 

 

Table 5 presents the results of comparison between two 

reduction dimension algorithms used by the proposed fault 

diagnosis approach. The first one is LPP algorithm, it gives 

the result of 62% accuracy, but the LPP-SVD algorithm 

gives the result of 82% accuracy obtained when the SVD 

algorithm was applied (the second reduction dimensions). 

The last result could be increased to reach better and high 

performance of recognition accuracy, which is the objective 

presented in section 5.2. 

5.2. Improvement of the fault diagnosis approach 

To improve the performance of recognition accuracy of 

the proposed approach, there is a lot of ways to do it. In this 

section, the NPE and MAED algorithms are applied on the 

feature set algorithm and the directional reduction method. 

In this step of proposed approach the feature set will be 

extracted, the same data are saved (Fault6, Fault7, Fault8, 

Fault9) and the MAED algorithm is applied for the normal 

state and the four kinds of faults. 

In the first time, the state vector of each fault should be 

constructed (the same parameters of equation (13) in section 

5.1). 

This vector has the fault specification, the very important 

parameters are the vw (wind speed) and Pgm (power energy), 

but when applying the K-means algorithm on these 

parameters for extraction, the feature set do not represent the 

best fault specification. 

The two schemas of Figure 10 represent the difference 

between feature set when the K-means algorithm (schema a) 

and MAED algorithm (schema b) are applied. 
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Fig. 10. Feature set of normal state, a) K-means and, b) 

MAED 

In Figure 10.a the data class of normal state (number of 

elements of the sample is 1000) and feature set with the k-

means algorithm (k=10, the ten red points), are shown.The 

feature set is located in the center of data, because this 

algorithm is based on the mean of each set, and the values of 

the electric energy (between 8.8x105 and 10.6x105Watts) are 

very large relatively to values of the wind speed and the K-

means algorithm application. It gives a very close average 

values between them as shows Figure 10.a. 

But Figure 10.b, presents the best scattering of feature 

set (n=10) when the K-means algorithm is applied to extract 

very important information of faults. 

The comparison concerns the feature set algorithm and 

the dimension reduction methods; the first and second steps 

of proposed approach. This comparison is established 

between the K-means and the MAED algorithms, because 

step 1 is very important for fault diagnosis. On the other 

hand, a second comparison is established between the 

reduction dimension methods (LPP and NPE) and their 

parameters nearest neighbors k=3 and dimension d=3.Then, 

the feature set is selected with the K-means algorithm. 
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Fig. 11.Feature sets with the MAED algorithm and the 

reduction of dimensions with the NPE: (a) fault 6, (b) fault 7, 

(c) fault 8, (d) fault 9, (e) Normal state. 

When the MAED and the NPE algorithms were applied, 

they give better performance (Figure 11) than section 5.1, 

where the set of each fault is well separated as shows 

Figure9.e. 

The main step in proposed approach is extraction of the 

feature set and MAED gives higher performance than k-

means. Also this step reinforces dispersion and centralization 

of feature set in the same fault. 

But the dimension reduction method (NPE) gives a 

higher separation between classes of defaults (e.g. class fault 

and class of fault b) than LPP. 

These two comparisons are summarized in Figure 12:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Schema of improvement of performance by the 

reduction dimension methods 

The results are summarized of this comparison in table 6: 

Table 6.Comparison of recognition accuracy of the fault 

diagnosis results. 

Recognition 

Accuracy 
Normal 

Fault 

6 

Fault 

7 

Fault 

8 

Fault 

9 
Average 

K-means 

LPP-SVD 
100% 90% 70% 90% 60% 82% 

Proposed 

MAED 

algorithm 

100% 
100

% 
92% 

100

% 

100

% 
98.4% 

 

Finally, the efficiency of the proposed approach appears 

in the case of the fault 9, the accuracy reached 100% where it 

was 60%. On the other hand, the higher average result of 

performance is (98.4%). 

6. Conclusion 

The proposed fault diagnosis approach is based on three 

steps, the first step is the extraction feature set, the second 

step is the directional reduction and the last step is the fault 

recognition. Three important algorithms were applied 

respectively for each step, the MAED algorithm, NPE 

algorithm and the SVM classifier. They were implemented 

on the wind turbine benchmark and gave the best feature set 

and better performance of dimension reduction. 

The extraction algorithm of the feature set reinforces 

dispersion and centralization of feature set in the same fault, 

where MAED algorithm gives the highest performance, and 

the dimension reduction method (NPE) gives the highest 

separation between classes of defaults. 

When this approach is applied to the actuators and 

system faults of wind turbine benchmark, it gives 98.4% 

recognition accuracy of the fault diagnosis result; it is the 

best result when it is compared to other methods (k-means, 

LPP). 

The next work will concentrate on the blades faults 

(actuators) of wind turbine, because there are variations of 

speed and direction wind.This last is considered as input of 

wind turbine, it is very important key to improve the power 

energy  
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