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Abstract- In wind energy conversion system (WECS) at wind speed above rated, the pitch angle is controlled to keep the 

generated output fixed so also the speed and the frequency. The model is built as a discrete model of WECS connected to Grid 

including a Line to Ground (LG) fault in Grid. A Proportional-Integral (PI) controller with gain Kp and Ki is used in pitch angle 

control loop. The proportional gain Kp and integral gain Ki are tuned through Particle Swarm Optimization (PSO) and Pattern 

Search (PS) algorithms. A comparison of two different objective functions with its weight adjustment is presented. The 

performances of the algorithms in designing the optimal controller are compared. The analysis indicates the superiority of PSO 

over PS and few others. It also takes less time to achieve the minimum error criteria. The controller designed using PSO 

minimizing the proposed objective function has better settling time as regards wind turbine speed response, compared to the 

others. The control action is validated in real time using OPAL-RT taking different cases of random wind speed, gust, gust 

with random wind speed and Line to Ground fault. 

Keywords Particle Swarm Optimization; Tuning; Power system fault; PI control; Wind power generation. 

 

1. Introduction 

Variable speed wind energy conversion system (WECS), 

needs initiation of pitch control of wind turbines after a 

specific wind speed at which the generator power or 

generator speed of wind turbine reaches its rated value such 

that mechanical stress during wind gust is reduced, electrical 

power delivered to grid is controlled[1,18]. In this 

conversion scheme, Doubly Fed Induction Generator (DFIG) 

accompanied by a lower rated power converter is used to 

capture more power enabling variable speed operation [2,3]. 

When it delivers power to a grid (infinite bus), which 

imposes the frequency to be constant, the speed must be set 

to a constant value mechanically by pitch control of blades of 

the wind turbine by suitable pitch drives [4]. Proportional-

Integral (PI) controllers have been widely used since last six 

decades in industries for process control applications. It has 

been emphasized in the report of Jonkman et al. [5] that there 

is no substantial benefit of using a Proportional-Integral-

Derivative (PID) controller for pitch control; rather a PI 

controller gives satisfactory performance. Thus, in order to 

control the pitch angle Proportional (P), PI controllers have 

been used in variable speed WECS with DFIG [1]. Research 

on adaptive and fuzzy controllers are also going on parallel 

[7,8]. But anti-wind up and bump-less transfer are some 

issues which are to be properly dealt for switching between 

controllers with different gains [9]. Controller design by 

optimization of gains for a desired objective have exhibited 

superior performance in many applications rather than 

Ziegler-Nichols tuning method [1-3],[6],[12-15].Their 

implementations are also costly and complicated. A proper 

design of controller beforehand with slightly under-damped 

response can overcome excessive control effort. Thus to get 

optimized gains of the controller, proportional gain Kp and 

integral gain Ki for a desired performance of the control loop, 

Particle Swarm Optimization (PSO) technique which is a 

simple algorithms with many adjustable parameters, has been 

used and shown satisfactory performance for global search in 

many areas [1-3],[6]. A comparative study of unified 

controller parameter design using PSO, Mean Variance 

Optimization (MVO) and Neural Network (NN) based 

approach is reported in DFIG with FACTS devices by Qiao 

et al. [3]. A wind turbine can be approximated to be a second 

order system [4]. One simple optimizing algorithm; Pattern 

Search (PS) is confined mostly to search in a local area [10-

13]. Other optimization techniques like Genetic Algorithm 
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(GA), Simulated Annealing (SA), Ant Colony Optimization 

(ACO), Differential Evolution (DE) and Firefly Algorithm 

(FA) have been applied successfully in many Engineering 

problems [14-18].  However, these techniques have not been 

compared in pitch control of WECS [19], in a consistent 

performance evaluation. 

The performance of the control system depends on the 

controller structure and the techniques employed to optimize 

the controller parameters. An optimization problem 

essentially needs a performance evaluation criteria or fitness 

function. In regulator control problem such as pitch control, 

the performance evaluation criteria i.e. the conventional 

objective functions, based on error are Integral of absolute 

error (IAE), Integral of squared error (ISE), Integral time 

absolute error (ITAE) and Integral time squared error (ITSE) 

etc. defined and used in [1],[13-14],[17], [19]. A system is 

considered to be optimal when these error criteria index 

reaches an extreme value, commonly a minimum value. But 

IAE and ISE fail to settle the speed to the reference 

minimizing overshoot as well as the settling time. In pitch 

control obtaining a minimum overshoot as well as the 

settling time in wind turbine speed response has importance 

as it will not only reduce the transients as well as reduce the 

effort of the actuator thus save power and wear and tear of 

the actuator. 

The objective of the presented work is as follows: 

(i) To develop a discrete model of the grid connected 

WECS including simulated fault for analysis under 

disturbances with designed controller and suitable for 

test in real time. 

(ii) To design a new objective function to obtain minimum 

overshoot & settling time in wind turbine speed in the 

operating range. 

(iii) To study the effect of objective functions on the 

performance of wind turbine speed response. 

(iv) To minimize objective functions for a step change of 

input wind speed below rated to above rated, instead of 

a fixed operating point supported in the work by Taher 

et al. [20].  

(v) Apply the PSO technique after optimizing its 

parameters for similar problem.  The optimal gains 

obtained for the new objective function reduces control 

efforts. 

(vi) To demonstrate the advantages of PSO over PS and 

other optimization algorithms (FA, GA, DE, SA and 

ACO) reported for the same problem here. 

(vii) To test the performance of optimal controller with other 

operating range of wind speeds and disturbances such 

as randomly varying realistic wind speed, wind gust and 

single line to ground fault on grid connection. 

(viii) Test the effectiveness of control in real time experiment 

using OPAL-RT. 

 The paper is organized as follows, Section 2 gives a 

brief description of the pitch control system and Section 3 

describes the algorithms of the optimization techniques. 

Section 4 compares the performance of the optimal pitch 

controllers designed followed by real time experimental 

results in Section 5 and Section 6 presents the concluding 

remarks. 

 

2. Description of the pitch controller 

The DFIG average model in MATLAB SIMULINK 

connected to a grid is used for the study [21-22]. In that 

model only a proportional controller is used in pitch control 

loop. Merit of using the model lies in that, it is a ready to use 

model with wind turbine and DFIG connected to grid. But 

the model does not include grid side fault condition, which is 

additionally included in the model for analysis under 

disturbances in this work.  

For test in real time using OPAL RT which supports 

discrete/ continuous models in MATLAB/Simulink, a fixed 

step discrete model is simulated. The overall grid connected 

system is shown in Fig.1.  

The pitch angle control structure inside one wind turbine 

used in this work is shown in Fig.2. The turbine rotor angular 

speed ωr is sensed through sensors. The desired turbine 

speed, ω_ref  is 1.2 pu in wind speed region above the rated, 

where maximum power extracted is 9 MW contributed by six 

units of wind turbine-DFIG of individual capacity of 1.5 

MW each and the rated speed of wind is 12 m/s. For 

simplified calculation, all the electrical quantities and angular 

speed are normalized to per unit system (pu) with a base 

power of electrical generator and base speed of synchronous 

speed respectively. The tower dynamics and aerodynamic 

interaction between turbines are neglected in this design. 

The operations of the wind turbine can be divided into 

three regions. The work of this paper is confined mainly to 

design of an optimal PI pitch controller for full load region 

marked as region III in Fig.3 where, wind speed is higher 

than rated but less than the cut out wind speed. The main 

control purpose in this region is to keep the generator power 

Pg around the rated generator power Pg,rated at 1 pu. To 

achieve this goal, turbine rotor speed ωr is to be kept around 

1.2 pu (ω_ref), then Pg remains around Pg,rated. In full load 

region, to facilitate ωr around 1.2 pu, the desired speed,   

pitch control is used. The PI controller sets the pitch control 

command which is input to the pitch drive. The pitch drive 

adjusts the pitch angle i.e. the angular position of the blade 

with reference to the plane perpendicular to the horizontal 

axis about its base on the rotor of the turbine-generator.  The 

pitch control taken up here is collective pitch control (CPC) 

[1], same set for all the blades at a time through one drive. 

The wind speed is increased in step from 8 m/s to 14 m/s 

and the controller gains Kp (Proportional Gain) and Ki 

(Integral Gain) running optimization program linking the 

model. Some of the equations related to pitch control are 

given below for understanding the system [1], [23-24]. 

 

 

Fig. 1. Single line diagram of grid connected WECS 
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Fig. 2. Schematic diagram of Proportional-Integral (PI) Pitch 

Angle Controller in DFIG 

The power available to the wind turbine shaft is given by: 
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Where, Pw = Power contained in wind (watt), C p =Power 

coefficient which is, ),( f , ρ= Air density (1.225 kg/m3 

at 150 C and normal pressure), A=Swept area/area of blades 

(m2)= R
2


, V a = Velocity of wind (m/s), β= Pitch angle 

(deg).    

Where in, the tip speed ratio    

    

(2) 

 

Where, ωr = Rotational speed of the wind turbine rotor (in 

pu), R=Radius of the swept area in m. 

The shaft mechanical power developed by the turbine (P) at 

any wind speed can be expressed as, 





3

3

5

)(
2

1
rp

RCP 

         (3) 

and 

 


0068.0)5002.04.0
116

(5176.0),( exp
2114.2




i

i

pC

 (4) 

  Where,  

  3

035.0

08.0

11





i

 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0

0.2

0.4

0.6

0.8

1

1.2

Cut in wind 
speed 5 m/s 

A

B

C
Rated wind 
speed12 m/s

D

Turbine speed (pu)

T
u

rb
in

e
 o

u
tp

u
t 

p
o

w
e

r 
(p

u
) 

  
  

  
  

  
  

  
  

OA- REGION-I (NO POWER)
BC-REGION-II 
DE-REGION-III (PITCH CONTROL)

Constant Power

Cpmax Operation

E

Constant Speed

 

 Fig. 3. Variation of wind turbine power with rotor speed, 

both in pu, showing regions of control 

 

The drive train dynamics for one mass model considered 

here is expressed as 

H

F

Hdt

d
TT me

r

2
)(

2

1


    
     (5) 

Where, H=Wind turbine inertia constant (s) and F=Friction 

factor (pu). 

So, (3) shows that, P is proportional to the cube of the 

rotor speed in region-II. For each wind speed increase λ 

changes and Cp depends on λ and β. As wind speed 

increases, λ decreases which affect Cp, hence power output P 

increases. In order to deliver constant power to grid, in 

region-III the pitch angle control signal is increased which 

decreases Cp and there by controls P. The pitch control signal 

is generated through a PI controller from the error.  

The error is given as: 
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The purpose of a feedback control system is to reduce the 

error, e(k), between any variable and its set value to zero as 

quickly as possible, where k is the no. of sample out of the 

total no. of samples taken for simulation ksim for the discrete 

model. The best value of controller gains Kp & Ki are 

obtained by minimizing a function based on error. Therefore, 

any criterion used should take into account the variation of 

response over the whole range of time. Four basic criteria 

IAE, ISE, ITAE and ITSE are in common use [1], [14-15]. It 

is reported in literatures that, ITAE optimizes better than the 

others [13] as it minimizes the integral of absolute error with 

time i.e. the area under the error response is minimized for 

small as well as large errors, thereby minimizing the steady 

state error and overshoot as well. Hence, this ITAE criterion 

is evaluated in optimizing the gains of the controller 

subsequently as (J1) given by:  
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Where, t  is the sampling time and represents the total 

simulation time. 

The pitch angle command activates a servomechanism, 

which consumes power. Again the power consumed for 

movement of the servo system back & forth for pitch control 

system, is to be reduced which increases the life of the 

pitching mechanism. The faster the settling, the lesser the 

mechanical stress on the turbine and structure. Therefore, a 

new objective function has been introduced in order to 

reduce the settling time for faster settling and also giving 

weightage to error as follows: 

Objective function 
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Where, µ is the weight given to settling time ts. µ is chosen 

after verifying the effect on the performance, to achieve a 

compromising result between steady state error & settling 

time so as that damping is introduced and least settling time 
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and overshoot in turbine rotor angular speed response ωr is 

achieved.  

3. Optimization Techniques 

3.1.Particle Swarm Optimization (PSO) 

PSO is one extremely simple population-based 

optimization method; which requires no gradient 

information. The general idea behind the optimization 

technique is birds (particles) flocking for food in a search 

space, where food is kept in best habitat, which corresponds 

to the optimized value of the problem. The particle position 

and velocity keep changing and best particle position p_best 

and best position among all the particles g_best is updated 

with each iteration. Finally the position vector reaches the 

best habitat and correspondingly, the best solution is 

achieved. It contains various control parameters such as 

confidence coefficients c1, c2  and inertia weights w1, w2 

which changes the result obtained, the details of which are 

given by Poultangar et al. in [1]. However, the flow of the 

algorithm can be depicted from Table 1. These types of 

algorithm are dependent on the control parameters. 

  

Table 1. Steps of Particle Swarm Optimization Algorithm 

Step 1 Initialization 

 Initialize algorithm parameters, No. of particles 

NP, Dimensions,Inertia_weight, 

Swarms_best_weight, Particles_best_weight, 

Swarm_size, Iterations and search bounds, 

initialize each particle randomly   

Step 2 Evaluate the population 

 Run the simulation model & evaluate the 

objective function 

Step 3 Update p_best,  g_best  

Step 4 Update position & velocity of particles 

Step 5 Repeat for particle K< NP 

Step 6 Check termination criteria else continue to step2 

 

3.2.Pattern Search (PS) 

The Pattern Search (PS) optimization technique is a 

derivative free evolutionary algorithm. It is simple in 

concept, easy to implement and computationally less 

expensive. It has a flexible and (exploratory move step sk, 

expansion factor k, contraction factor ᶿk) well-balanced 

operator to enhance and adapt the global search and fine tune 

local search [11]. The PS algorithm computes a sequence of 

solutions that may or may not approach to the optimal point. 

It begins with a set of points called mesh, around the initial 

points X0[13]. The proper initial point affects the optimal 

search. The mesh is created by adding the current point to a 

scalar multiple of a set of vectors in four coordinate 

directions in a two dimensional plane called a pattern. The 

scalar multiple is the exploratory move step size/mesh size. 

The points in the pattern are evaluated by the objective 

function in a particular fashion, starting from x axis in 

anticlockwise direction; and compared which is called 

polling. For minimization problem, if a point in the mesh is 

having lesser objective function value, it is taken as the 

current point at the next iteration and the poll is a success. 

After a success, the algorithm steps to next iteration.  The 

current mesh size is increased by a factor 2 called the 

expansion factor. Now if in a particular iteration, no corner 

point in the mesh has a lesser objective function value than 

the value at initial/current point at that iteration, the poll fails 

and same current point is used in the next iteration. Besides, 

the current mesh size is also multiplied by 0.5, a contraction 

factor, so that the mesh reduces size at the next iteration and 

the process is repeated until stopping criteria is reached. The 

algorithm is dealt in detail showing the steps and variants by 

Torczon et al.[11]. The simple steps are presented in Table 2. 

4. Results & Discussion 

The implementation of all programs was performed in 

MATLAB® Version 2009b, in Dell PC with i-5 processor 

and 4GB RAM. The model parameters adopted by the 

authors are given in Appendix A[1]. While simulating, the 

wind speed change started at 5 s from 8 m/s to 14 m/s in a 

single step. This range of wind speed is taken instead of 

Table 2. Steps of pattern search algorıthm 

Step 1 Initialization 

 Initialize algorithm parameters mesh size, 

Iterations, contraction factor, expansion factor, 

maximum function evaluations, search bounds 

and initial point  X0 

Step 2 Fitness Evaluation 

 Run the simulation model & evaluate the 

objective function 

Step 3 Poll the points in the pattern checking 

f(X1)>f(X0) 

Step 4 If yes expand 

Step 5 Else contract 

Step 6 Repeat iteration  for N< Nmax 

Step 7 Check termination criteria else continue to 

step2 
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larger value because average wind speed varies in this 

range and higher value occurs occasionally [24,26]. 

Furthermore, for higher wind speed if the controller is tuned, 

there is chance of reduced control effort for lower wind 

speed as sensitivity of pitch angle to aerodynamic torque is 

small in this range. 

The parameters of PSO are chosen after tuning parameters 

of algorithm for this problem as in Table 3. The model is a 

discrete model with sample time 5X10-5 to study accurately 

the dynamics resulting from control system. Hence, the 

simulation is performed for 100 s. The best values are 

highlighted in bold. The various parameters for the PS, SA, 

DE, FA, GA and ACO algorithms that are used to obtain the 

proposed optimized controller gains are given in Appendix 

B. 

The controller gains Kp and Ki have been found out for 

optimal response using two different objective functions 

based on error for a step change of wind speed from 8 to 14 

m/s in the same search space for population size N=10, 

number of iterations I=20. The optimization was run 20 

times as randomness is present in each of the algorithms and 

the best values are given. The time domain performance is 

also presented in comparison to five other algorithms such as  

FA, GA, DE, SA and ACO with same population/ genome 

size and consistent number of iterations for the proposed 

objective function J2. It is observed from Table 4 that 

increasing order of best fitness value is: PS, PSO, SA, DE, 

FA, GA and ACO. But, when settling time is seen from 

Table 3. Tunıng of PSO parameters 

Varied 

parameter 

Min Max Avg Std 

Dev 

Other 

parameters 

C1=1.0  8.7343 10.099 9.2983 0.7179 P=10, 

N=20, 

C2=0.5 C1=1.5  10.9362 11.218 11.2853 0.3519 

C1=2.0  6.4144 7.2286 6.7547 0.4243 

C2=0.5  6.4144 7.2286 6.7547 0.4243 P=10, 

N=20, 

C1=2.0 C2=1.5 6.4144 6.61392 6.4986 0.1033 

C2=2.0 11.0041 11.6414 11.2933 0.3299 

P=5 8.7343 9.054 8.9323 0.1715 N=20, 

C1=2.0, 

C2=0.5 P=10 6.4144 7.2286 6.7547 0.4243 

N=5 8.7343 11.220 10.0172 1.2430 P=10, 

C1=2.0, 

C2=0.5 N=10 6.7816 7.7315 7.1243 0.6152 

N=20 6.4144 7.2286 6.7547 0.4243 
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Fig. 4. Variation of rotor angular speed with time(s) for step 

change of wind speed 

Table 4,  the order is: PSO, PS, SA, DE, GA, ACO. The 

steady state error is the least for PSO. In Fig. 4 all the 

responses with gains determined using various algorithms 

with different objective functions and control are given for a 

comparison for the cases in Table 4. The turbine speed 

response without any controller ωr increases gradually 

without settling to the set point of 1.2 pu in 100 s. This is due 

to that, the order of the system as a whole is higher than a 

second order system. 

It can be seen that there is considerable overshoot and 

settling time is also high with only ITAE (J1). As the ITAE 

criteria gives the lowest steady state error (SSE) as compared 

to other standard criteria [13], a new objective function has 

been proposed here taking ITAE and giving weightage to 

settling time ts. It can be seen from Fig. 4, that for the new 

two part objective function given in (9), the settling time is 

drastically reduced and the overshoot is also minimum. The 

error is in the range of 10-4 though higher than other four 

cases in Table 4, is well within requirement. The weightage 

given to ts is varied to achieve best result as tabulated in 

Table 5. With ITAE (J1) only the steady state error is less but 

with larger overshoot. With objective to minimize ts, the 

settling time is reduced, but overshoot has increased. The 

best result is obtained with µ= 0.5.  

The simulation model was also run for 40 s and 100 s 

under two cases of optimization and the results after 20 

generation are summarized in Table 6. From the tabulated 

results it is clear that for both cases of simulation run time, 

the algorithm run time for PS is nearly 1.7 times as compared 

to PSO. With increase of simulation time, the fitness value 

increases as the objective function is a function of time in 

both cases of optimization. But, with increase of simulation 

run time, standard deviation of fitness is decreased, with 

corresponding decrease in time domain performances i.e. the 

average settling time and average % overshoot. This 

indicates an improvement of search. For simulation  time of 

40 s PSO takes the least time to complete optimization. The 

increasing order is: PSO, SA, FA, PS, GA, DE and ACO. 

Thus, PSO is computationally less expensive. Though, DE  

and FA have given better performance than PSO in other 

applications, with reduced population size and iterations their  
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Table 4. Tıme domaın performance ındıces evaluatıon for optımızatıon technıques 

Contro

ller 

Optimiza

tion 

algorithm 

kpp_pitch kii_pitch Best Fitness 

Value 

Objective 

function 

Settling time  

ts(s) (2% 

band) 

%Over-

shoot 

ITAE SSE 

PI PSO 170.9139    12.7403 20.2403 J1 67.3014 0.9103 20.2403 1.5507X10-5 

 PS 2496.0 0.001 21.7794 J1 74.9685 -0.5838 21.7794 0.0029 

PI PSO 480.4684 49.8 24.2972 J2 14.6862 0.6346 16.9541 -1.1228X10-4 

 PS 172 50 23.6971 J2 17.4593 2.2455 14.9675 -9.4731X10-5 

P  500 - - - 25.4682 -0.1085 31.3964 0.0026 

PI FA 2375.3731 30.772 26.4241 J2 29.4799 -0.0015 11.6841 0.0047 

PI GA 917.1396 4.1099 27.0501 J2 25.2548 0.4194 14.4227 0.0068 

PI SA 1043.4691 49.8728 24.8882 J2 19.6759 0.3515 15.0502 0.0043 

PI DE 1250 25.001 26.2108 J2 23.8019 0.3682 14.3098 0.0058 

PI ACO 7 3 30.1789 J2 19.8095 2.3533 20.2742 0.0087 

 

Table 5. Effect of change of weıght ın objectıve functıon 

Weight 

(100s 

run) 

kpp_pitch kii_pitch Best 

Fitness 

Value 

Settling 

time ts (s) 

(2% 

band) 

% 

Overshoot 

ITAE SSE 

ITAE 170.9139    12.7403 20.2403 15.2360 0.9103 20.2403 1.55e-05 

0.1 140.2020    15.4247 19.4936 14.9861 0.7653 17.9950 -2.66e-05 

0.3 879.7971    41.5416 27.1622 17.5346 0.7778 21.9018 -1.7260e-4 

0.5 480.4684 49.8 24.2972 14.6862 0.6346 16.9541 -1.1228e-4 

0.7 278.8957    39.0128 25.9797 18.1200 -0.3011 13.2957 -1.8425e-4 

0.9 140.1367    37.7449 27.6482 17.7421 1.5353 11.6803 -8.2875e-5 

1.0 82.4695    28.0604 29.1586 19.0429 2.8431 10.1157 -1.0523e-4 

Only ts 72.6567    24.4956 19.1271 19.1271 2.8451 15.1313 -1.7667e-4 

perfomance suffer here. This is also in accordance with no 

free lunch theorem. The PSO has better searched globally 

with higher standard deviation where as the standard 

deviation for 20 runs has reduced gradually in the order : 

PSO, PS, SA, FA, GA, DE and ACO.  

The best fitness in each iteration is plotted in Fig. 5 for the 

best results in minimizing the objective function J2 by PSO 

and GA. It can be seen that the variation from first iteration 

(starting from 670) to 20th iteration (23.6971) is wide in case 

of PS. whereas, the variation is with in 30 from initial to final 

in PSO. It also indicates that, if less no. of iterations is 

chosen, PS will be far behind PSO in achieving minimum. 

Performance of PS may be at par with PSO only when it is 

initialized in a smaller search bound near the global 

optimum. But, it will take more runs with few converging to 

the global minimum than PSO. On the other hand, PSO with 

random initialization converges to global optimum in most of 

the cases. 

For Kp=480.4684 and Ki=49.8 optimized by PSO the 

turbine speed and the control action are shown in Fig. 6 for a 

change of wind speed from 8 m/s to 14 m/s starting at 5 s and 

finally maintaining 14 m/s. It is seen that, the pitch angle has 
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increased up to 3 deg at 27 s and gradually reduced to 2 deg 

after 35 s. It is not reduced to zero because wind speed is 

finally settled to 14 m/s(2 m/s higher than rated). 

Table 6. Performance of algorıthms wıth sımulatıon run tıme 

Simul-

ation 

time 

(s) 

Opti-

miza

tion 

algor

-ithm 

Average 

fitness  

Stan-

dard 

devia-

tion 

Average 

settling 

time (s) 

Avg  % 

over-

shoot 

Algo-

rithm 

run 

time (s) 

40 PSO 24.9384 5.7819 15.7145 1.1100 1943 

40 PS 23.8011 2.3922 26.7911 1.6449 3241 

100 PSO 25.6223 4.7601 14.9604 0.8731 4747 

100 PS  24.3924 1.9570 15.0504 1.2806 8102 

40 FA 26.9374 1.4018 30.1408 1.2178 2214 

40 GA 27.4598 0.8614 26.7142 1.8215 18383 

40 SA 25.2117 1.8716 20.1046 1.7012 2058 

40 DE 26.5819 0.7713 24.8317 1.7514 19212 

40 ACO 30.4318 0.7013 20.0105 2.3832 37801 

 

As wind is stochastic, hence it necessitates testing the 

controller under such a condition. So a random wind speed 

signal shown in Fig.7 varying between 9 to 15 m/s is applied 

to test the system with different controllers. From Table 7, 

the standard deviation in angular speed of rotor is seen to be 

low with the proposed PI controller (0.0338) as compared to 

the standard P control (0.0384) and without control (0.0482). 

Similarly, the pitch angle has increased less (5.0911) as 

compared to P control (7.0107). Thus better control is 

achieved with the proposed controller as compared to P 

control designed by Zeigler-Nichols tuning rule. In a similar 

work on active power control using fuzzy-PI control[8] the 

standard deviation is shown to be 0.0751 in active power(the 

controlled variable) where as in our work it is reduced to 

0.0338 in angular speed of rotor. Thus the speed fluctuation 

is reduced as a result of better control action for smoothing it. 

The effect of different control can be seen from Fig.7 in 

responses of wind turbine angular speed ωr and pitch angle β. 

It shows the effectiveness of the proposed method when 

random wind speed profile is applied. 
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Fig. 5. Convergence plot of PSO and PS algorithms 
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Fig. 6. Variation of angular speed and pitch angle with time 

for step change in wind speed 
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Fig. 7.  Comparison of controllers under random wind speed 

5. Real Time validation of results in Opal-RT 

The Opal-RT is a fully digital power system simulator [26] 

developers to prove their ideas, prototypes and final products 

in a realistic environment with a typical sampling  time step 

of 50 μs with a combination of custom software and 

hardware. It is an ideal tool for the design, development and 

testing of power system protection and control schemes. 

The model was compiled in master and slave processors. 

Two outputs from the system, turbine speed or angular speed 

of rotor ωr and corresponding control signal pitch angle are 

observed for the same cases as studied in SIMULINK. The 

results are observed in a digital storage oscilloscope running 

it from host PC, which is connected to RT-Lab simulator as 

in Fig.8. 

Table 7. Performance of controller for random wınd speed (9 

to 15 m/s) 

CONTROLLER Angular 

speed (pu) 

Pitch Angle (deg) 

 Std Dev Max Std Dev 

NO CONTROL 0.0482 0  

P 0.0384 7.0107 1.7994 

PI (PSO)(J2) 0.0338 5.0911 0.9476 
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Fig. 8. Experimental set up of OPAL-RT lab 

 

rated wind speed of 12m/s was checked in both MATLAB 

SIMULINK and OPAL RT. The pitch angle signal was also 

0 deg, which is expected at rated as in Fig.9 (a). When run in 

OPAL RT, the pitch angle shows a zero(blue) and rotor 

angular speed (yellow) one big and one small division 1.2 pu 

in Fig.9 (b) . This is the reference angular speed of rotor that 

is to be tracked in pitch control when wind speed is above 12 

m/s. The small yellow arrow in right points to the reference 

level. 

3.1. Random wind speed 

A wind speed signal taken from real measurement of wind 

speed from NREL with standard deviation 1.2560 is applied 

to the model [26]. It can be seen from Fig.10 (a) that for 

random wind speed change within 9 to 15 m/s the pitch angle 

is increased to 5 deg for randomness in wind speed 

increasing to 14.5 m/s, the pitch angle varies within 1 deg 

when model is run in MATLAB SIMULINK. It indicates 

that, the ωr settles around 1.2 pu after 10 s though the wind 

speed falls below the rated wind speed of 12 m/s after 12 s. 

Similar results are shown in Fig.10 (b) when model is run in 

real time in OPAL RT. As the variation of angular speed of 

turbine rotor ωr is in the range of 0.8 to 1.4 pu and the pitch 

angle from 0 to 27 deg, and both are taken at a time in one 

scope, the variation of pitch angle with in 1deg (one small 

div) is seen as jitter, similar is case of ωr. 

3.2.  Wind Gust (14 to 20 m/s) 

This wind gust at 5 s taken here is 14 to 20 m/s beyond the 

maximum value of wind speed (14 m/s) for which the 

controller is tuned shown in Fig.11. With the designed PI 

controller, the response tracks as in Fig. 12(a). The overshoot 

with such steep rise of wind speed also is 1.244 pu which is 

within 5% band of the steady state value. The pitch angle 

rises up to 6 deg at 8 s then reduces to 1.4 deg. But, as with 

reduced control signal rotor angular speed again raises to 

1.206 pu, pitch angle rises to 2.6 deg finally settles to 2 deg 

at 33 s when ωr settles to reference. The real time results in 

Fig.12 (b) shows a similar control action (2 peaks). The 

results in scope are shifted by 1big division in x-axis. Hence 

5 s is 1&1/2 big division. 
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Fig. 9 (a) Angular speed of rotor and pitch angle for rated 

wind speed 12 m/s 

(b)Real time OPAL-RT results (angular speed of rotor  r 

(yellow) y scale-1 pu/div, pitch angle (blue) y scale-10 deg, 

x-scale  10 s/div)           
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Fig. 10 (a) Variation of angular speed of rotor and pitch 

angle with time for random wind speed  

(b)Real time OPAL-RT results (angular speed of rotor  r 

(yellow) y scale-1 pu/div, pitch angle (blue) y scale-10 deg, 

x-scale  10 s/div)  
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Fig. 11.  Wind gust from 14 to 20 m/s at 5 s. 

3.3. Wind Gust (8 to 14 m/s) with randomness & Line to 

Ground (LG) fault 

A case of random change of wind speed with gust 

occurring at 5 s with a line to ground fault on B phase of grid 

occurring at 10 s is simulated. The wind speed is shown in 

Fig.13. The mean wind speed after gust is 17 m/s. This 

situation is common under stormy weather condition. The 

controller designed is able to perform as seen from the Fig.14 

(a) and settles the response of the wind turbine speed at 25 s 

after gust and short circuit. The pitch angle after rising to 9.8 

deg to control speed due to gust, for subsequent random 

variation, falls to 8.2 deg. On comparison of this result with 

that of case 2 the final settled pitch angle is around 8.2 deg in 

this case, higher for higher wind speed, where as in case 2 it 
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Fig. 12. (a) Variation of angular speed of rotor and pitch 

angle with time for wind gust 

(b)Real time OPAL-RT results (angular speed of rotor  r 

(yellow) y scale-1 pu/div, pitch angle (blue) y scale-10 deg , 

x-scale  10 s/div )           
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Fig. 13.  Wind gust at 5 s with random wind speed 
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Fig. 14 (a) Variation of angular speed of rotor and pitch 

angle with time for wind gust, randomness & Line to Ground 

(LG) fault 

(b)Real time OPAL-RT results (angular speed of rotor  r 

(yellow) y scale-1 pu/div, pitch angle (blue) y scale-10 deg, 

x-scale  10 s/div)     

is around 2 deg for lower wind speed. The real time result 

under this condition in Fig.14 (b) shows similar rise of pitch 

angle starting earlier at 7 s than 10 s shown in 

MATLAB/Simulink result. However, as random signal is 

used to generate wind model, the response differs in different 

run. As randomness is present, as ωr further increases pitch 

control action again increases to 4 deg after a decrease to 2 

deg. The flickers noticed in ωr and pitch angle are due to 

random wind speed. For above rated random variation in 

wind speed the pitch control varies for change in wind speed 

which is noticed. 
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6. Conclusions 

A well designed control system for wind energy 

conversion system (WECS) enables better power quality and 

efficient generation. In this paper optimal fixed gain PI 

controller was designed using seven optimization techniques, 

PSO, PS, FA, GA, SA, DE and ACO taking two objective 

functions. Ample insight into the algorithm parameter setting 

and rigorous analysis on proper objective function design are 

also given. In addition, their performances were compared. 

PSO takes less time for same number of iterations and 

independent of initial point, hence achieves global optimum. 

Whereas, PS and SA attain similar results with proper setting 

of initial condition, with increased iteration and increased 

time. Further, here the controller performance has been 

analyzed for realistic wind speed and different simulated 

disturbances. Though the steady state error is little higher for 

the new objective function given, the control effort is less as 

the response has minimum overshoot in the optimization 

range. The settling time also varies as the time of occurrence 

of disturbance changes, but it is minimized.  Hence it can be 

concluded that after design and fixing gains of PI controller 

by this novel objective function, a simple controller is 

expected to control the system under varying disturbances. 

 Appendix A 

Parameters of wind turbine:  

Power capacity of individual turbine=1.5 MW, Cut-in wind 

speed=5 m/s, Rated wind speed=12 m/s, Cut out wind 

speed=25 m/s, Rated turbine speed =1.2pu, Maximum pitch 

angle=27deg, Rate of change of pitch angle=2deg/s. 

Appendix B 

Parameters of Pattern Search algorithm: 

Initial size=1, Expansion factor=2.0, Contraction factor=0.5, 

Maximum iteration=20. 

Parameters of Genetic algorithm[14]: 

Selection: Stochastic Uniform, Crossover probability: 0.8, 

Type: Scattered, Mutation probability: 0.1, Elite count: 2, 

Scaling function: Rank. 

Parameters of Simulated Annealing algorithm[15]: 

Method: Fast annealing, Temperature update function: 

Exponential temperature update with 0.95 ^iteration. 

Parameters of Ant Colony Optimization algorithm[16]: 

Initial pheromone τ0=10, pheromone  weight α=0.3, 

pheromone evaporation rate ρ=0.1. 

Parameters of Differential Evolution algorithm[17]: 

Strategy: DE/best/1/exp step size scaling factor F=0.8, 

crossover probability CR =0.7. 

Parameters of Firefly algorithm[18]: 

Light absorption coefficient γ=1, Randomization parameter 

or step size factor  α=0.2, Attractiveness β= 1.0, randomness 

reduction scaling factor δ=0.97.  
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