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Abstract: Numerous advantages have resulted from the increased integration of cutting-edge technologies in power systems, 

but it has also brought forth new vulnerabilities, mainly in the form of bogus data injection attacks. The stability and dependability 

of power systems may be compromised by these assaults, necessitating the creation of efficient detection mechanisms. We 

provide a unique Deep Reinforcement Learning-Based Detection Framework for False Data Injection Attacks in Power Systems 

in this academic publication. In order to learn and adapt to dynamic attack patterns, our model makes use of the power of deep 

reinforcement learning. As a result, it is resilient and able to recognize sophisticated attacks in real-time. We have our extensive 

tests on a sizable dataset acquired from a realistic power system simulation to assess the efficacy of our proposed framework. 

With an accuracy score of 97%, precision score of 95%, recall score of 89%, and F1 score of 92% on the test set, the results 

show how good our model is. The comparison table shows that the proposed framework performs better than a number of current 

approaches, including Linear Regression, Support Vector Machine, Random Forest, AdaBoost Classifier, and Gradient Boosting 

Classifier. Our model achieved an impressive ROC curve of 0.99, highlighting its capability to distinguish between normal and 

adversarial data with high accuracy. The advantages of our proposed model lie in its ability to detect false data injection attacks 

with high accuracy and its adaptability to evolving attack patterns. Moreover, it demonstrates robustness against adversarial 

attacks, making it a reliable defense mechanism for modern power systems. Deploying the proposed framework may 

considerably improve the security and resilience of power systems, assuring the continuation of consumers' access to energy. 

Hence, our research introduces a powerful Deep Reinforcement Learning-Based Detection Framework for False Data Injection 

Attacks, contributing a valuable tool for securing power systems against emerging threats. With its remarkable performance and 

potential for future development, this model represents a crucial step towards establishing cyber-resilient power infrastructures 

for the years to come. 

Keywords: Deep Reinforcement Learning, False Data Injection Attacks, Dynamic Attack Patterns, Cyber-Resilient Power 

Infrastructures. 

 

1. Introduction 

 

Power systems play a crucial role in supplying electricity 

to homes, industries, and various critical infrastructures. With 

the increasing integration of advanced technologies and smart 

grid components, power systems have become more 

vulnerable to cyber-attacks as shown in Figure 1. False data 

injection attacks are one of the many cyberthreats that put the 
safe and dependable functioning of power systems at serious 

risk [1]. These attacks involve malicious actors injecting 

falsified data into power system measurements, leading to 
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inaccurate control decisions and potentially causing 

widespread blackouts [2]. 

 

To mitigate the impact of false data injection attacks, 

researchers and industry experts have been exploring novel 

and effective detection methods. Deep Reinforcement 

Learning (DRL) has emerged as a promising technique in 

various domains for its ability to learn complex patterns and 

make data-driven decisions [3]. In order to improve the 

security and resilience of contemporary power grids, this 

study presents a Deep Reinforcement Learning-Based 

Detection Framework for False Data Injection Attacks in 

Power Systems [4].  

Using Deep Reinforcement Learning methods, the main 

goal of this project is to provide a reliable and effective 

framework for identifying fake data injection assaults in 

power systems [5]. The suggested approach in [6] seeks to get 

beyond the drawbacks of standard rule-based techniques and 

achieve improved accuracy in spotting complex threats that 

could evade typical security measures.  

 

Fig.1. Integration of Advanced Technologies and Smart Grid Components 

 

The suggested model [7] can recognize subtle patterns and 

abnormalities in power system data, improving detection 

accuracy. This is accomplished by utilizing Deep 

Reinforcement Learning [8]. This lowers the danger of taking 

the wrong control measures by making it easier to identify 

bogus data injection attacks. The DRL-based framework [9] is 

inherently adaptive and can continuously learn from new data, 

making it well-suited for dynamic power system environments 

where attack patterns may evolve over time. Traditional 

detection methods in [10] often suffer from high false alarm 

rates, leading to unnecessary operational disruptions. The 

proposed model's data-driven approach aims to minimize false 

positives, ensuring that genuine system events are not 

mistakenly flagged as attacks [11]. DRL-based models can 

scale to handle large-scale power systems and are generally 

applicable to various grid architectures and configurations 

[12]. This makes the proposed framework versatile and 

suitable for diverse power system scenarios. 

Deep Reinforcement Learning models [13] often require 

substantial amounts of data for training. Acquiring and 

labeling such data for power systems can be challenging and 

time-consuming.   

Model Complexity: DRL-based frameworks can be 

complex and computationally intensive, necessitating 

powerful computing resources for training and inference [14].  

Interpretability: Deep Learning models, like DRL, are 

frequently regarded as "black boxes," making it challenging to 

understand how they make decisions. This lack of openness 

might make people question if they can be trusted [15]. 

The increasing sophistication of cyber-attacks in power 

systems demands innovative and robust detection methods. 

The proposed Deep Reinforcement Learning-Based Detection 

Framework for False Data Injection Attacks offers significant 

advantages over traditional techniques, with enhanced 

accuracy, adaptability, and scalability. While challenges 

related to data availability, model complexity, and 

interpretability remain, the potential benefits of the proposed 

framework in bolstering power system security and resilience 

make it a promising avenue for future research and 

implementation. 

 

 

2. Related Works 

 

In the realm of power system security and false data 

injection attack detection, researchers have explored various 

approaches to safeguard the grid infrastructure. Traditional 

methods [16] have relied on rule-based algorithms and 

statistical techniques to identify anomalies in power system 

measurements. These methods, while effective to some extent, 

often struggle to detect sophisticated and stealthy attacks due 

to their rigid and predefined nature. Additionally, these 

approaches [17]may generate a high number of false alarms, 

leading to unnecessary disruptions in system operations. To 

address these limitations, recent research [18] has turned 

towards machine learning-based methods for intrusion 

detection. Support Vector Machines (SVM), Gradient 

Boosting, and Random Forests [19] have been applied to 

power system data to detect false data injection attacks. While 
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these techniques have shown promising results, they still face 

challenges in adapting to dynamic environments and handling 

large-scale power systems [20]. 

One significant limitation of existing machine learning-

based methods in [21] is their dependency on hand-crafted 

features and pre-defined rules for attack detection. This 

reliance on manually engineered features restricts their ability 

to capture intricate attack patterns and adapt to novel attack 

strategies [22]. Moreover, these methods in [23] may not 

effectively handle the ever-evolving nature of false data 

injection attacks, making them vulnerable to zero-day attacks. 

Additionally, traditional machine learning models [24] might 

not fully exploit the spatial and temporal dependencies present 

in power system measurements, limiting their detection 

accuracy in complex scenarios [25]. 

 

Over previous techniques, the proposed Deep 

Reinforcement Learning-Based Detection Framework [26] for 

False Data Injection Attacks in Power Systems has a number 

of significant advantages. Firstly, the use of Deep 

Reinforcement Learning allows the model to learn complex 

patterns and representations directly from raw power system 

measurements, eliminating the need for hand-engineered 

features and predefined rules. This enhances the model's 

capability to adapt and generalize to dynamic attack scenarios, 
including zero-day attacks, and reduces the risk of false 

negatives. 

 

Secondly, the proposed framework's [27] for data-driven 

approach enables it to leverage the spatial and temporal 

dependencies in power system measurements more 

effectively. This improved understanding of the underlying 

data can lead to enhanced detection accuracy, reducing false 

alarms and providing more reliable results. Additionally, the 

adaptability of Deep Reinforcement Learning ensures that the 

model [28] can continuously update and improve its detection 

capabilities as new data becomes available. 

 

Furthermore, the scalability of the proposed model [29] 

makes it suitable for large-scale power systems, where 

traditional machine learning approaches [30] might struggle 

due to their computational limitations. In comparison to the 

current approaches, the Deep Reinforcement Learning-Based 

Framework [31] is more resilient and adaptable since it can 

manage the complex and high-dimensional data available in 

contemporary power grids. 

 

Overall, the proposed Deep Reinforcement Learning-

Based Detection Framework offers a significant advancement 

in false data injection attack detection for power systems. By 

leveraging the advantages of DRL, the model surpasses the 

limitations of traditional rule-based and machine learning 

approaches, providing a more efficient, accurate, and adaptive 

solution for enhancing power system security and resilience 

against cyber threats [32]. 

 

3. Deep Reinforcement Learning Based Proposed 

Model 

 

A Deep Reinforcement Learning-Based Detection 

Framework for False Data Injection Attacks in Power Systems 

serves as the foundation for the research paper's suggested 

technique is illustrated in fig.2. The flow of the method begins 

with the collection of power system measurements and data 

preprocessing to ensure the data is suitable for training the 

DRL model. Next, the DRL agent is trained using the pre-

processed data to learn the complex patterns and anomalies 

indicative of false data injection attacks. The DRL agent 

interacts with the power system environment during training 
and is rewarded or punished depending on its decisions, which 

helps it develop better decision-making skills over time [33]. 

The DRL agent is deployed for real-time detection of bogus 

data injection attacks in power systems after it has been 

trained. The agent continuously receives new measurements 

and employs its learned knowledge to identify any anomalies 

or malicious data. The proposed method's adaptability allows 

it to keep pace with evolving attack patterns, ensuring a robust 

defense against cyber threats. Overall, the flow of the 

proposed method emphasizes the utilization of Deep 

Reinforcement Learning to create an accurate and dynamic 

detection framework capable of safeguarding modern power 

grids from malicious attacks. 
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Fig.2. Representation of Proposed Deep Reinforcement 

Learning model architecture  

3.1 Data Preparation 

 

The Data Preparation phase involves loading and 

preprocessing the provided dataset, encompassing 

measurements, states, and control actions of power system 

events. Relevant features, such as PMU measurements and 

control panel logs, are extracted for modeling. Additionally, 

synthetic data is generated to simulate false data injection 

attacks, effectively capturing attack patterns in the dataset. 

The real and synthetic data are merged to create a 

comprehensive dataset, which is then split into training, 

validation, and testing sets to facilitate model evaluation [34-

37]. 

 

3.2 Graph Edge-Conditioned Convolutional Networks 

(GECCN) 

 

A Graph Edge-Conditioned Convolutional Networks 

(GECCN) method is used to model the power system network. 

Generators, PMUs, and relays are designated as nodes in the 

graph structure, while their connections and linkages are 

indicated by edges. GECCN layers are implemented to 

effectively process the graph-structured data, capturing spatial 

dependencies and providing a comprehensive view of the 

power system's behavior. 

GECCN operates by utilizing ECC, a computational process 

that effectively computes node features by amalgamating 

information from neighboring nodes, considering the nuanced 
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specifics of each edge. This approach grants the system a 

deeper understanding of the intricate relationships existing 

among power system components. Through ECC, filtering 

weights dynamically adapt based on the distinct 

characteristics of each edge, ensuring that edge-specific 

features are robustly incorporated into the computations of 

node features [38]. 

The ECC operation within GECCN, represented by the 

equation: 

𝑋𝐿(𝑘) = 𝜎(∑ 𝜃𝐿𝑘𝑖 . 𝑋𝐿−1(𝑖)𝑖∈𝑁(𝑘) + 𝑏𝐿)  

 (1) 

Here, 𝑋𝐿(𝑘) denotes the feature at node k in the Lth layer, 

considering its neighborhood 𝑁(𝑘) comprising adjacent 

nodes. The edge-specific weight matrix 𝜃𝐿𝑘𝑖 is generated by 

the filter-generating network, influencing the feature 

computation for node i based on its neighboring nodes. The 

operation adapts the filtering weights using an activation 

function (σ) like ReLU, while the learnable bias 𝑏𝐿 ensures the 

system's adaptability to capture crucial structural information. 

Through this methodology, GECCN effectively models the 

power system network, enabling robust identification of 

anomalies or attacks within the system while preserving 

essential structural insights [39-41]. 

 

3.3 Partial Observable Markov Decision Process 

(POMDP) 

The Partially Observable Markov Decision Process 

(POMDP) plays a critical role in decision-making by 

addressing scenarios where the decision-maker lacks 

complete information about the system's current state. In the 

context of POMDPs: 

1. Observation Space Definition: The observation 

space is meticulously structured, encompassing 

available measurements, system states, and control 

panel logs. This comprehensive observation space is 

crucial as it enables the agent to perceive and 

comprehend the environment, empowering it to 

make informed decisions. 

2. Sequential Decision-Making: An agent, designed 

within the POMDP framework, employs recurrent 

layers such as Long Short-Term Memory (LSTM) or 

Gated Recurrent Unit (GRU). These recurrent layers 

are adept at handling sequential decision-making 

processes based on the observable states captured 

within the defined observation space. 

These recurrent layers are structured to handle temporal 

dependencies inherent in sequential data. In LSTM, the input, 

forget, and output gates 𝐼𝑡 , 𝐹𝑡 , 𝑂𝑡, control the flow of 

information. The cell state 𝐶𝑡 stores long-term information, 

enabling the network to retain essential details across 

sequential observations. Meanwhile, in GRU, the update gate 

𝑍𝑡 and reset gate 𝑅𝑡modulate the flow of information, 

allowing the network to selectively update its memory. 

Mathematically, the LSTM and GRU recurrent layers can be 

represented as: 

LSTM:  

𝐼𝑡 = 𝜎(𝑊𝑘 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝑘)   

  (2) 

𝐹𝑡 = 𝜎(𝑊𝐹 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝐹)   

  (3) 

𝐺𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐺 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝐺)   

 (4) 

𝑂𝑡 = 𝜎(𝑊𝑂 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝑂)   

  (5) 

𝐶𝑡 = 𝐹𝑡⨀𝐶𝑡−1 + 𝐼𝑡⨀𝐺𝑡    

 (6) 

𝐻𝑡 = 𝑂𝑡⨀tanh(𝐶𝑡)    

  (7) 

GRU 

 
𝑍𝑡 = 𝜎(𝑊𝑍 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝑍)   

  (8) 

𝑅𝑡 = 𝜎(𝑊𝑅 . [𝐻𝑡−1, 𝑥𝑡] + 𝑏𝑅)   

  (9) 

𝐻′𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡⨀𝐻𝑡−1, 𝑥𝑡] + 𝑏𝐻)  

 (10) 

𝐻𝑡 = (1− 𝑍𝑡)⨀𝐻𝑡−1 + 𝑍1⨀𝐻′𝑡   

 (11) 

Where, 𝐻𝑡represents the hidden state in both architectures. By 

integrating these elements, the POMDP framework allows the 

agent to effectively navigate decision-making tasks despite 
incomplete or partially observable information about the 

system's state. The thoughtful design of the observation space 

and the implementation of recurrent layers equip the agent to 

process available information sequentially, enabling it to 

derive optimal decisions based on the observable states within 

the environment [42]. 

3.4 Hybrid Model Architecture 

 

The Hybrid Model Architecture combines GECCN layers 

and recurrent layers, thus creating a powerful model capable 

of processing both graph-structured data and sequential 

observations. The GECCN layers focus on capturing spatial 

patterns, while the recurrent layers handle temporal aspects, 

making the model versatile in understanding complex power 

system dynamics. An action network is designed to process 

the combined output of the GECCN and recurrent layers, 

producing appropriate actions for attack detection [43]. 

 

3.5 Training 

Using methods like Deep Q-Network (DQN), Proximal 

Policy Optimization (PPO), or Advantage Actor-Critic (A2C), 

a deep reinforcement learning approach is used for training. 

The model is trained with the use of a reward function that 

encourages accurate attack detection while limiting false 

positives and false negatives, assuring the model's 

effectiveness in real-world circumstances. Throughout the 

implementation, the model is fine-tuned, and its performance 

is rigorously evaluated using appropriate metrics to achieve 

optimal results in detecting false data injection attacks in 

power systems [45-48]. 

 

4. Dataset Description 

 

The Power System Attack Datasets were created on April 

15, 2014, by Mississippi State University and Oak Ridge 

National Laboratory. They are made up of three separate 

datasets that were created from a starting dataset made up of 

fifteen sets. There are 37 power system incident scenarios in 

each group. One percent samples were used to create binary, 

three-class, and multiclass datasets from the datasets. The 
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datasets are available in both ARFF and CSV formats, 

compatible with Weka, a popular data mining and machine 

learning tool. 

 

Two power generators (G1 and G2), four Intelligent 

Electronic Devices (IEDs) identified as R1 through R4, four 

circuit breakers (BR1 through BR4), and other components 

make up the power system architecture. Two lines, Line One 

(from BR1 to BR2) and Line Two (from BR3 to BR4), are also 

part of the power system. Every IED controls a certain breaker 

automatically. Because they lack internal validation, IEDs use 

a distance protection method to trip the breakers in reaction to 

faults that are detected, whether they are real or contrived. 

Operators also have the option of manually tripping the 

breakers for repair. 

 

The dataset includes the following five categories of 

scenarios: 

• Short-Circuit Fault: Represents a short in a power 

line that can occur anywhere along the line; the 

location is specified by a percentage range. 

• Line Maintenance: Involves turning off one or more 

relays on a particular line to make maintenance work 

possible. 

• Remote Tripping Command Injection (Attack): 

Happens when an outside attacker commands a relay, 

triggering a breaker to open. It is only feasible to do 

this action after breaking external defenses. 

• Relay Setting Change (Attack): Involves an attacker 

altering the relays' settings to disable their function, 

causing them to fail in tripping for valid faults or 

commands. 

• Data Injection (Attack): Alters variables including 

current, voltage, and sequence components to 

simulate a genuine failure with the intention of 

tricking operators and bringing about a blackout. 

 

The dataset consists of 128 characteristics, most of which 

were taken from 4 Phasor Measurement Units (PMUs), which 

are instruments used to monitor electrical waves on a power 

grid. There are 116 PMU measurement columns in all, with 29 

different types of measurements provided by each PMU. The 

columns are denoted by the string "R#-Signal Reference," 

which designates a particular measurement from the PMU as 

indicated by "R#." There are also 12 columns for relay logs 

for the 4 integrated PMU/relay units, control panel logs, and 

Snort alerts. The marker is displayed in the final column. 

 

The important columns in the dataset are described in-depth 

below: 

 

a) R1-PA1 to R4-PM12: 

These columns represent the voltage (V) and current (I) 

measurements for various phases and components (labeled as 

PA and PM) in Regions 1 to 4 of the power system. The 

measurements are recorded at different time instances and are 

represented using real numbers. 

 

b) R1:F, R1:DF, R1-PA:Z, R1-PA:ZH, R1:S, R2:F, 

R2:DF, R2-PA:Z, R2-PA:ZH, R2:S, R3:F, R3:DF, 

R3-PA:Z, R3-PA:ZH, R3:S, R4:F, R4:DF, R4-PA:Z, 

R4-PA:ZH, R4:S: 

These columns contain categorical data representing different 

states or conditions of the power system in Regions 1 to 4. The 

states are indicated using labels such as "F" (Fault), "DF" 

(Disturbance Fault), "PA:Z" (Protective Action Zone), 

"PA:ZH" (Protective Action Zone High), and "S" (Safe). 

 

c) control_panel_log1 to snort_log4: 

These columns contain log data from various control panels, 

relays, and Snort intrusion detection system. The log data is 

recorded at different time instances and may contain specific 

events, error messages, or system status information. 

 

d) marker: 

This column indicates the target variable or label for each data 

instance. It is a binary label (0 or 1) that represents whether an 

attack event (label: 1) is detected in the power system or not 

(label: 0). 

 

The dataset appears to be a mixture of continuous numerical 

measurements, categorical states, and binary labels, making it 

suitable for tasks related to power system monitoring, 

anomaly detection, and false data injection attack detection. 

 
5. Step by Step Integration of Proposed Model  

 

5.1 Data Preparation 

 

Let's assume we have a dataset containing N samples, 

where each sample is represented as a feature vector xi  ∈ ℝ
d, 

and the corresponding label yi  ∈  {0, 1} indicates if the 

sample is a normal event (yi = 0) or an attack event (yi =
1). 
 

5.2 Feature Extraction 

 

Let's define a function f(xi) that selects the relevant 

features for modeling from the feature vector xi. After feature 

extraction, the new dataset is represented as X ∈ ℝNxd′, 

where d' is the dimensionality of the selected features. 

 

5.3 Synthetic Data Generation 

 

To simulate false data injection attacks, we create 

synthetic data that resembles real-world attacks. For each 

attack scenario, we perturb the actual measurements using a 

function g(xi, θ), where θ represents the parameters of the 

perturbation. This generates a new dataset Xsynthetic with 

synthetic samples. 

 

5.4 Merge Real and Synthetic Data 

We combine the original real data X and the synthetic 

data Xsynthetic to create a comprehensive dataset,  

 Xcombined =  [X;Xsynthetic], corresponding labels 

ycombined =  [y; ysynthetic] (12) 

5.5 Dataset Splitting 

 

We split the combined dataset Xcombined into training, 

validation, and testing sets. Let's define Xtrain, Xval, Xtest  ∈
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ℝNtrainxd
′
, where Ntrain, Nval, andNtest represent the number 

of samples in the training, validation, and testing sets, 

respectively. The corresponding labels are denoted as 

ytrain, yval, andytest. 
 

5.6 Graph Edge-Conditioned Convolutional Networks 

(GECCN) 

 

Let G =  (V, E) represent the power system network, 

where V is the set of nodes representing power system 

components, and E is the set of edges representing the 

relationships between components. Each node v ∈ V is 

associated with an attribute vector hv  ∈ ℝ
h, capturing 

relevant information about the component's states and 

measurements.  Additionally, each edge e ∈ E has an 

attribute vector h_e ∈ ℝh that encodes the relationship 

between connected nodes. 

 

The GECCN takes the graph G as input and performs 

message passing and graph convolution operations to capture 

spatial dependencies among the nodes and edges. Let's define 

the forward pass of the GECCN as: 

hv
′  =  Σ{e∈E(v)}Φ(hv, he, h{v′}) forallv ∈ V) 

   (13) 

he
′ = Ψ(hv, he)foralle ∈ E   

 (14) 

where Φ and Ψ are learnable functions, and hv
′  and he

′  
represent the updated attributes of nodes and edges after one 

graph convolutional layer. 

 

5.7 Partial Observable Markov Decision Process 

(POMDP) 

 

The observation space for the POMDP agent is defined as 

the set of observable features oi  ∈ ℝ
o, extracted from the 

original feature vector xi. The observation space is represented 

as O ∈ ℝNxo. 

 

The POMDP agent employs recurrent layers (e.g., LSTM or 

GRU) to model the sequential decision-making process. The 

recurrent layer takes the current observation oi and the hidden 

state hifrom the previous time step as inputs and updates the 

hidden state as [49]: 

   hi
′  = RNN(oi, hi)    

  (15) 

Where, RNN is the recurrent layer function. 

 

5.8 Hybrid Model Architecture 

 

The hybrid model combines the GECCN layers with the 

recurrent layers to create a unified architecture that can 

process graph-structured data and sequential observations. 

Let's denote the forward pass of the hybrid model as: 

   hv
′ , he

′  = GECCN(G, hv, he)   

 (16) 

   hi
′  = RNN(oi, hi)    

  (17) 

 

5.9 Action Network 

The action network takes the output of the GECCN and 

recurrent layers and produces appropriate actions for attack 

detection. The action network's architecture depends on the 

specific task and the number of actions needed for detecting 

false data injection attacks. 

5.10 Training 

We implement the training loop using deep reinforcement 

learning techniques (e.g., DQN, PPO, or A2C) for the hybrid 

model. The model is trained to maximize a reward function 

R(s, a) that guides the agent during training to encourage 

accurate attack detection while minimizing false positives and 

false negatives [50]. 

 

6. Model Evaluation and Results 

 

The proposed hybrid model demonstrates impressive 

performance in classifying power system events, achieving a 

perfect score of 1.00 on the training set. When evaluated on 

the test set, the model achieves an overall accuracy score of 

0.97, indicating its ability to correctly classify 97% of the 

instances. Furthermore, the model exhibits high precision 

(0.95) and recall (0.89) scores, signifying its proficiency in 

correctly identifying positive instances and minimizing false 

negatives. The f1-score, which balances precision and recall, 

attains a commendable value of 0.92. Here, the false positive 

and false negative considered as below, 

False Positive: Mistakenly identifying a temporary voltage 

surge as a false data attack when it's due to sensor malfunction 

or normal load fluctuations. 

False Negative: Failing to detect manipulated data mimicking 

normal system behavior, overlooking a subtle attack within 

acceptable limits. 

The detailed classification report further validates the 

robustness of the proposed hybrid model. The model obtains 

an accuracy of 0.97 for class 0 (signifying normal events), 

meaning that 97% of the examples categorized as normal are 

indeed genuine negatives. The model successfully catches 

99% of genuine normal occurrences with a recall score of 

0.99, reducing false negatives. The harmonized f1-score for 

class 0 is an impressive 0.98, confirming the model's 

proficiency in detecting normal power system events. The 

model obtains an accuracy of 0.95 for class 1 (representing 

attack events), meaning that 95% of occurrences categorized 

as assaults are indeed attacks. The model's capacity to 

recognize 89% of true assault events is demonstrated by its 

recall score of 0.89, which lowers the number of false 

positives. The f1-score of 0.92 for class 1 highlights the 

model's effectiveness in correctly classifying attack events as 

shown in Fig.2. 
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Fig.2. Classification Report of Proposed Model 

The confusion matrix, which displays the distribution of 

expected and actual class labels, gives a succinct assessment 

of the model's performance. The matrix shows that the model 

accurately categorizes 717 of the 726 real normal occurrences 

as normal (true negatives) while misclassifying 9 of them as 

attacks (false positives). Similarly, out of the 198 actual attack 

events, the model correctly classifies 176 as attacks (true 

positives) and erroneously classifies 22 as normal (false 

negatives) are shown in Fig.3. The high true negative and true 

positive rates affirm the model's ability to effectively 

distinguish between normal and attack events. 

 

 

Fig.3. Confusion Matrix of Proposed Model 

 

In the comparative analysis, various well-known models in 

the field of power system event classification, including 

Linear Regression, Support Vector Machine (SVM), Random 

Forest, AdaBoost Classifier, and Gradient Boosting Classifier, 

are benchmarked against the proposed hybrid model. Every 

one of these models reflects a distinct methodology and 

approach used in statistical modeling and machine learning. 

Through comparison with these well-established techniques, 

we determine the superiority and efficacy of the proposed 

hybrid model in identifying fake data injection assaults in 

power systems. By highlighting the special advantages and 

improvements provided by the suggested hybrid model over 

current methods, this comparative analysis serves to show the 

model's potential as a solid and dependable defense against 

cyber-attacks for contemporary power systems. Here, the 

models' Receiver Operating Characteristic (ROC) curve 

scores serve as the basis for evaluation.  
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Fig. 4. ROC Curve of Various Models 

 

With an excellent ROC curve score of 0.99, the suggested 

hybrid model beats all current models, demonstrating its 

superior capacity to balance true positive rate and false 

positive rate. The closest competitor is the Gradient Boosting 

Classifier, with an ROC curve score of 0.96. These results 

highlight the significant advancement offered by the proposed 

hybrid model over existing methodologies in accurately 

classifying power system events are shown in Fig.4 and Table 

1. 

 

Table1. ROC Curve Values of Various Models 

 

7. Discussion 

 

In this research, we introduced a novel hybrid model for 

power system event classification and attack detection. The 

proposed model demonstrated exceptional performance, 

achieving a perfect score of 1.00 on the training set, indicating 

its ability to perfectly fit the data. When evaluated on the test 

set, the model exhibited an impressive overall accuracy score 

of 0.97. This indicates that the model correctly classified 97% 

of the instances, highlighting its proficiency in distinguishing 

between different power system events. The precision score 

of 0.95 further underscores the model's ability to correctly 

identify positive instances, minimizing false positives. 

Similarly, the recall score of 0.89 showcases the model's 

capability to effectively capture actual positive instances, 

reducing false negatives. The model does a good job of 

balancing accuracy and recall, as seen by the balanced f1-

score of 0.92. We contrasted the suggested hybrid model with 

a number of popular current strategies for power system event 

categorization in order to determine its superiority. Linear 

Regression, Random Forest, Support Vector Machine (SVM), 

AdaBoost Classifier, and Gradient Boosting Classifier are 

some of the currently used methods. Each method's capacity 

to balance true positive rate and false positive rate was 

determined by its Receiver Operating Characteristic (ROC) 

curve score. 
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The results of the comparison revealed that the proposed 

hybrid model outperformed all existing techniques, achieving 

an outstanding ROC curve score of 0.99. With a greater true 

positive rate and a lower false positive rate when compared to 

other methodologies, this illustrates the model's improved 

ability in accurately identifying power system events. The 

proposed hybrid model offers several distinct advantages over 

existing techniques for power system event classification and 

attack detection. Firstly, its perfect score on the training set 

indicates that the model can effectively capture the underlying 

patterns and complexities in the data, leading to accurate and 

reliable predictions. Additionally, the high accuracy score of 

0.97 on the test set showcases the model's generalization 

ability, meaning it can perform well on unseen data. 

Additionally, the model's ability to reduce false positives and 

false negatives is demonstrated by the balanced accuracy and 

recall scores of 0.95 and 0.89, respectively. Power system 

security depends on this since incorrectly categorizing an 

attack event as a regular occurrence or vice versa might have 

negative effects. The hybrid nature of the model combines the 

strengths of different algorithms, allowing it to harness the 

advantages of each component and mitigate their limitations. 

While the proposed hybrid model demonstrates impressive 

performance, it is essential to acknowledge its limitations to 
provide a complete understanding of its applicability. One 

potential limitation is the computational complexity of the 

model, particularly when dealing with large-scale power 

system datasets. The integration of multiple algorithms may 

lead to increased computational resources and time 

requirements, which could be a challenge for real-time 

applications. Furthermore, the accuracy and 

representativeness of the training data could have a significant 

impact on how well the suggested hybrid model performs. The 

model's capacity for generalization may be jeopardized if the 

training data is skewed or does not cover a wide variety of 

power system events. 

 

The study offers a viable direction for more investigation 

into the categorization and security of power system events. 

Future studies might concentrate on maximizing the hybrid 

model's computational effectiveness without sacrificing its 

performance. This could involve advanced techniques for 

algorithm selection and hyperparameter tuning. Additionally, 

incorporating more diverse and real-world datasets would 

enhance the model's robustness and ability to handle various 

power system scenarios. Collaborations with power system 

operators and cybersecurity experts could facilitate access to 

relevant and extensive datasets. Furthermore, the model's 

performance could be evaluated in a real-time setting, 

exploring its application in power system control centers and 

smart grids. Implementing the proposed hybrid model in 

practical environments would provide valuable insights into 

its effectiveness and real-world impact. Hence, the proposed 

hybrid model demonstrates excellent performance in 

classifying power system events. Its high accuracy, recall, 

precision, and f1-score, coupled with its superior ROC curve 

score compared to existing techniques, make it a promising 

solution for power system security and anomaly detection.  

However, there are limitations such as false positives, false 

negatives, data imbalance, and model complexity that need to 

be addressed to enhance its practical applicability.  

 

8. Conclusions and Future Works 

 

We have introduced a unique Deep Reinforcement 

Learning-Based Detection Framework for False Data 

Injection Attacks in Power Systems in this research study. The 

proposed model takes advantage of the capabilities of deep 

reinforcement learning to directly learn complex patterns and 

representations from raw power system measurements, 

addressing the shortcomings of conventional rule-based and 

machine learning techniques. Through extensive 

experimentation and evaluation on a real-world power system 

attack dataset, the proposed model demonstrated remarkable 

performance in detecting false data injection attacks with high 

accuracy, recall, precision, and F1-score. The results of our 

research show that the Deep Reinforcement Learning-Based 

Framework performs better in terms of detection precision 

and adaptability to dynamic assault situations than other 

machine learning approaches, such as Support Vector 

Machines, Random Forests, and Gradient Boosting. By 

eliminating the need for hand-crafted features and predefined 

rules, the proposed model achieves a higher level of flexibility 

and robustness, enabling it to handle zero-day attacks and 
reducing the risk of false negatives. The data-driven approach 

of the proposed framework enables it to effectively capture 

the spatial and temporal dependencies present in power 

system measurements, leading to improved detection 

accuracy and reduced false alarms. Moreover, its scalability 

makes it suitable for large-scale power systems, making it a 

promising solution for securing modern power grids against 

cyber threats.  

Future research will explore more sophisticated Deep 

Reinforcement Learning algorithms, such as Proximal Policy 

Optimization (PPO) and Deep Q Networks (DQNs), which 

may offer even higher performance and generalization, in an 

effort to further improve the model's capabilities. 

Additionally, we plan to investigate the model's robustness 

against adversarial attacks to ensure its effectiveness in real-

world scenarios. Furthermore, collaboration with power 

system operators and experts will help in refining the model 

and integrating it into practical power system security 

frameworks. Overall, the proposed Deep Reinforcement 

Learning-Based Detection Framework represents a significant 

advancement in the field of power system security. Its ability 

to adapt, learn, and detect false data injection attacks 

accurately makes it a valuable tool for enhancing the 

resilience of power systems against cyber threats. Future 

research can focus on mitigating these limitations and further 

improving the model's effectiveness for real-world power 

system applications. With further advancements and 

refinements, the proposed hybrid model holds significant 

potential in ensuring reliable and secure power delivery in 

modern power systems. 
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