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Abstract: Amid the growing complexity and uncertainties surrounding power systems due to the incorboration of renewable 

energy sources and smart grid technologies, this study presents a pioneering solution aimed at enhancing power grid stability. 

The problem statement delineates the critical necessity for heightened reliability in power systems, emphasizing the need for 

precise short-term electric load forecasting and daily peak load prediction. The proposed system introduces a sophisticated hybrid 

deep learning model meticulously crafted to address these challenges. This innovative model intricately amalgamates gradient-

boosting based multiple kernel learning, dynamic time warping distance, gated RNNs, and Bayesian deep LSTM neural 

networks, empowering it to prognosticate residential net load probabilistically. The systematic flow of the proposed system 

navigates through a holistic architecture leveraging an array of advanced techniques for comprehensive data preprocessing, 

model training, and forecasting. Commencing with data preprocessing techniques like Ensemble Empirical Mode Decomposition 

(EEMD) and Bisecting K-Means Algorithm for feature selection, the model progresses to train on Gradient-boosting based 

multiple kernel learning and employs dynamic time warping (DTW) distance for precise daily peak loads’ predictions. Gated 

Recurrent Neural Networks (RNNs) adeptly capture temporal dependencies, while Bayesian deep LSTM neural networks furnish 

probabilistic forecasts. The results corroborate the model's exceptional performance, demonstrating the training accuracy of 

99.94% and the validation accuracy of 99.13%. Comparative analysis with established methodologies firmly establishes the 

superiority of the proposed hybrid deep learning model. Its proficiency in accurate load forecasting, provision of probabilistic 

predictions, and surpassing conventional methods establishes it as a potent solution poised to fortify power grid stability within 

the evolving landscape of modern smart grids. 
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1. Introduction 

 

The global energy landscape is undergoing a 

transformative shift towards sustainable and eco-friendly 

alternatives, driven by the incorporation of renewable energy 

resources and the emergence of smart-grids [1]. Smart grids 

have revolutionized the traditional power grid infrastructure, 

offering bidirectional energy flow and empowering 

consumers to become active participants in energy generation 

and distribution. While these advancements bring forth 

numerous benefits, they also introduce new challenges in 

maintaining power grid stability due to the inherent 

complexities and variability of renewable energy sources [2]. 

Deep learning has been a useful instrument in a number of 

domains recently, such as driverless cars, natural language 

processing, and picture identification [3]. Recognizing its 

potential, researchers have begun exploring its application in 

the energy sector to address challenges such as load 

forecasting, demand management, and grid stability. In this 

research, we present a sophisticated deep-learning model 

created especially to improve smart grid power grid stability 

[4]. The model leverages a hybrid approach, combining 

multiple cutting-edge techniques to provide accurate and 

reliable short-term load forecasting, peak load predictions, and 

probabilistic net load forecasting [5]. 

The proposed advanced deep learning model offers 

several key advantages. By integrating ensemble empirical 
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mode decomposition and the Bisecting K-Means Algorithm 

for data preprocessing, the model effectively identifies and 

retains relevant features from load data. This ensures accurate 

load forecasting, minimizing the risk of grid instability caused 

by demand-supply imbalances [6]. The model's utilization of 

Gradient-boosting-based multiple kernel learning (MKL) 

enhances its robustness by capturing complex patterns in the 

load data. MKL's ability to adapt to different types of data 

enables the model to handle various scenarios, making it 

suitable for real-world smart grid applications. Incorporating 

dynamic time warping (DTW) distance and gated recurrent 

neural networks (RNNs) in the model allows for accurate daily 

peak load predictions [7]. DTW ensures precise time series 

comparison with varying lengths, while Gated RNNs 

effectively capture long-term dependencies in the data [8]. 

The inclusion of the Bayesian deep LSTM neural networks in 

the model enables the generation of probabilistic residential 

net load forecasts. By quantifying uncertainty in predictions, 

grid operators can make informed decisions and effectively 

manage grid operations [9, 10]. 

While the proposed model offers significant advantages, 

it is essential to consider its limitations. The data 

preprocessing steps, especially ensemble empirical mode 

decomposition [11], and the training of deep learning models 

can be computationally intensive. Adequate computational 
resources may be required to achieve timely results [12, 13]. 

Training the Gradient-boosting based multiple kernel learning 

model and Bayesian deep LSTM neural network may demand 

a substantial amount of data and involve hyperparameter 

tuning to achieve optimal performance [14,15]. 

This research endeavors to achieve two primary objectives: 

firstly, enhancing power grid stability within smart grids by 

delivering precise short-term load forecasts and peak load 

predictions; secondly, incorporating a Bayesian approach into 

the model to offer probabilistic forecasts for residential net 

load, thereby enabling grid operators to factor in uncertainty 

during decision-making processes. 

The contributions of this research are as follows: 

• This hybrid model uniquely amalgamates cutting-

edge methodologies such as ensemble empirical 

mode decomposition, Bisecting K-Means Algorithm, 

Gradient-boosting based multiple kernel learning, 

Dynamic Time Warping, Gated RNNs, and Bayesian 

deep LSTM neural network. 

• These techniques collectively enable a significant 

advancement in achieving heightened power grid 

stability. Moreover, the model's adaptability and 

scalability render it highly applicable in practical 

smart grid contexts, facilitating seamless energy 

management and robust stability assessments. 

The research unfolds an advanced deep learning model 

meticulously crafted to fortify power grid stability by 

overcoming challenges in load forecasting and net load 

predictions. This model stands as a valuable contribution, 

demonstrating advantages, limitations, objectives, and 

substantial implications for energy management and grid 

stability through thorough experimentation and analysis. 

Ultimately, this work signifies a pivotal step in fostering 

sustainable and stable operations within smart energy grids. 

The abbreviation used in this study summarized as below 

Table1 

.  

Table1. Nomenclature 

Parameter Explanation 

RNN Recurrent Neural Network 

LSTM Long Short Term Memory 

MKL Multiple Kernel Learning 

DTW Dynamic Time Warping 

SAIMA Seasonal Autoregressive Integrated Moving Average 

SVM Support Vector Machines 

GRU Gated Recurrent Units 

CNN Convolutional Neural Networks 

RBF Radial Basis Function 

EEMD Ensemble Empirical Mode Decomposition 

IMFs Intrinsic Mode Functions 

𝑥1, 𝑥2, … , 𝑥𝑛 input data points 

𝑦1, 𝑦2, … , 𝑦𝑛, binary class labels 

𝑦𝑛 linear SVM tries 

𝑏, 𝛾 Bias term 

𝑊𝑇𝑥 + 𝑏 = 0 decision boundary 

‖𝑥𝑖 − 𝑥𝑗‖ Euclidean distance 

𝜎 parameter controlling the kernel's width 

𝑦𝑖̂ , 𝑡 predicted output  

𝑥𝑖 data point 

𝑓𝑘(𝑥𝑖) prediction of the 𝑘 th weak learner 

𝐿 loss function 

𝑓 regression function, 
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𝜔 weights of the kernels 

𝐾𝑗 base kernels 

𝑀 number of base kernels 

𝜆 regularization parameter 

𝜋 set of matched data points X, Y 

𝑑 distance function 

 

2. Related Works 

 

In the realm of power grid stability and load forecasting, 

extensive research has been conducted using a diverse range 

of techniques and methodologies. Due to their simplicity and 

readability, traditional time series approaches like SARIMA 

(seasonal autoregressive integrated moving averages) 

and ARIMA (autoregressive integrated moving 

averages) have been used often for load forecasting [16]. In 

the meanwhile, the capacity of ML techniques like decision 

trees, support vector machines (SVMs), and random forests to 

recognize complicated load patterns has been investigated 

[17]. These methods have shown promising results but may 

struggle with nonlinearity in load patterns [18]. 

 

With the advent of deep learning, long short-term memory 

(LSTM) networks, convolutional neural networks (CNNs) and 

gated recurrent units (GRUs) have gained attention for their 

enhanced accuracy and robustness in load forecasting [19]. 

Additionally, some studies have utilized ensemble models, 

combining multiple forecasting algorithms, to achieve 

improved accuracy and reduce prediction errors [20]. 

 

However, existing methodologies also come with certain 

limitations. Traditional time series methods may not 

effectively handle complex and nonlinear load patterns, 

impacting forecasting accuracy [21, 22]. Some machine 

learning and deep learning models require extensive tuning of 

hyperparameters, making them challenging to optimize and 

leading to potential overfitting. Moreover, many methods lack 

the ability to quantify uncertainty, limiting their utility in 

decision-making under uncertain conditions [23]. 

Additionally, certain deep learning models can be 

computationally expensive and resource-intensive during 

training and inference [24, 25]. 

 

The study [26] presents a Decentral Smart Grid Control 

(DSGC) system using differential equations and optimized 

Deep Learning (DL) models, achieving an accuracy of 99.62% 

. Another study introduces the Multidirectional Long Short-

Term Memory (MLSTM) approach for smart grid stability 

prediction, outperforming conventional DL models [27]. 

Meanwhile, a comprehensive review emphasizes DL 

applications in Smart Grids (SG), exploring federated learning 

and distributed computing, highlighting future research 

directions [28]. Additionally, an innovative grid-connected 

harvesting model integrates Quantum Tunnelling Particle 

Swarm Optimization (QT-PSO) to optimize energy harvesting 

without loss, leveraging photovoltaic and electromagnetic 

energy conversion [29].Finally, a study focuses on enhancing 

power synchronization control's transient stability during grid 

faults using machine learning techniques, proposing an 

encoder stacked classifier for instability detection to ensure 

synchronization stability [30].These varied approaches 

collectively contribute to advancing the understanding and 

management of smart grid systems, showcasing the diverse 

and innovative strategies employed to enhance stability, 

efficiency, and performance. The summaries of existing 

methods are shown in Table2. 

 

 

 

 

Table2. Summary of existing works 

S.No Study and Purpose Methodology Results 

(26) Decentral Smart Grid Control (DSGC)  Differential equations, Optimized 

DL models 

Achieved 99.62% accuracy 

(27) Multidirectional Long Short-Term 

Memory (MLSTM)  

MLSTM approach for smart grid 

stability prediction 

Precision (97%), recall 

(99%) and F1-score 

(99.00%) 

(28) Review of DL Applications in Smart 

Grids  

Explored federated learning, 

distributed computing 

Improved decision making 

(29) Grid-Connected Harvesting Model  Utilized Quantum Tunnelling PSO 

for energy optimization 

Achieved efficient energy 

harvesting 
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(30) Enhancing Power Synchronization 

Control  

Used machine learning for 

instability detection 

Ensured synchronization 

stability 

 

 

The proposed advanced deep learning model addresses 

these limitations by integrating ensemble empirical mode 

decomposition and the Bisecting K-Means Algorithm for 

feature selection. This allows the model to effectively handle 

complex load patterns and produce more accurate forecasts. 

The integration of advanced techniques, including Gradient-

boosting based multiple kernel learning, Dynamic Time 

Warping, and bayesian deep LSTM neural networks, enhances 

the model's robustness and adaptability to diverse datasets. 

The incorporation of the bayesian deep LSTM neural 

networks enables the model to provide probabilistic forecasts, 

quantifying uncertainty and facilitating more informed 

decision-making. Despite its hybrid nature, the proposed 

model is designed to be scalable and applicable to real-world 

smart grid scenarios. The primary advantage of the suggested 

model lies in its ability to enhance power grid stability through 

accurate load forecasting and net load predictions, thereby 

contributing to a more stable and efficient smart grid 
operation. The suggested advanced deep learning model 

performs better in terms of accuracy, robustness, and 

uncertainty quantification when compared to previous efforts. 

By addressing the limitations of traditional methods and 

incorporating state-of-the-art techniques, the proposed model 

provides a comprehensive and effective solution to power grid 

stability and load forecasting challenges in smart grids.  

Hence, the proposed advanced deep learning model offers 

significant advancements over existing methodologies, 

providing a promising avenue for improving power grid 

stability and load forecasting accuracy. By leveraging the 

strengths of various techniques and mitigating their 

limitations, this novel hybrid model opens up new 

opportunities for optimizing smart grid operations and 

ensuring reliable power supply in the face of dynamic and 

complex load patterns. The suggested model holds the 

possible to revolutionize the field of smart grids and contribute 

to building a sustainable and resilient power infrastructure for 

the future. 

 

3. Base Models 

The base models utilized in this research paper encompass 

Logistic Regression, Linear SVM, SVM with RBF kernel, and 

XG Boost.  

3.1 Logistic Regression 

 

The widely-used linear classification method known as 

logistic regression excels at binary classification tasks like 

predicting the stability (stable or unstable) of electricity grids. 

Finding the probability that an input corresponds to a certain 

class is the goal of logistic regression. When input 

characteristics are combined linearly, the result is mapped in 

Eq. 1 to the values between 0 and 1, which denotes the 

probability that the input corresponds to the positive classes 

[31]. 

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =  
1

1+𝑒−𝑧    (1) 

 

Where, 𝑧 is the linear combinations of input features and their 

corresponding weights, including an intercept term is shown 

in Eq. 2. 

 

𝑧 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛   (2) 

 

Here, 𝑥1, 𝑥2, … , 𝑥𝑛 represent the input features, and 𝑤1, 𝑤2, 

… , 𝑤𝑛 are the corresponding weights. The coefficient 𝑤0  is 

the intercept term.  

 

The decision boundary is set by a threshold (usually 0.5), 

where inputs with a probability greater than the thresholds are 

categorized as one class (e.g., stable), and inputs with a 

likelihood lower than the thresholds are categorized as the 

other class (e.g., unstable). 

 

3.2 Linear SVM 

The goal of the powerful Linear Support Vector Machine 

(SVM) classification algorithm is to find the best hyperplane 

in the feature space to divide the two classes. The primary 

objective of Support Vector Machines (SVM) is to maximize 

the margin between classes, which is the distance between the 

hyperplane and the nearest data points of each class. This 

margin maximization improves the model's capacity for 

generalization [32]. 

 

Given a set of input data points 𝑥1, 𝑥2, … , 𝑥𝑛 and their 

corresponding binary class labels 𝑦1, 𝑦2, … , 𝑦𝑛, where 𝑦𝑛 ∈
{−1,1}, the linear SVM tries to address the maximal weight 

vectors 𝑊 and bias term 𝑏 that define the hyperplane equation 

as shown in Eq. 3. 

 

𝑊𝑇𝑥 + 𝑏 = 0   (3) 

 

The decision boundary is given by 𝑊𝑇𝑥 + 𝑏 = 0, and one 

class is assigned to the data points on the positive side of the 

hyperplane, while another class is assigned to the data points 

on the negative side. 

 

3.3 SVM with RBF Kernel 

A linear SVM might not be sufficient in situations when the 

data cannot be separated linearly. The Radial Basis Function 

(RBF) kernel may be used to expand SVM, enabling the 

method to handle non-linear decision boundaries [33]. The 

input data is transformed by the RBF kernel into a higher-

dimensional space of features, where a linear hyperplane may 

be used to discriminate between the classes. Eq. 4 defines the 

RBF kernel. 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 )  (4) 
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where 𝑥𝑖 and 𝑥𝑗 are input data points, ‖𝑥𝑖 − 𝑥𝑗‖  represents the 

Euclidean distance between them, and 𝜎 is a user-defined 

parameter controlling the kernel's width. 

 

By using the RBF kernel, SVM can find a nonlinear decision 

boundary in the higher-dimensional feature space, enabling it 

to handle complex relationships between features and improve 

classification performance. 

 

3.4 XG Boost 

A sophisticated ensemble learning approach called Extreme 

Gradient Boosting (XG Boost) integrates the predictions of 

many weak learners, often decision trees, to produce a reliable 

and precise forecasting model. Decision trees are added 

iteratively as part of the process, with every tree intending to 

fix the errors generated by the ones before it. A highly precise 

model is produced by this iterative procedure. 
 

XG Boost's goal is to minimize a particular loss function that 

relies on the issue at hand. For binary classification tasks, the 

algorithm typically uses the logistic loss function, which is 

suitable for predicting probabilities of class membership. 

 

The prediction of XG Boost at each iteration 𝑡 can be 

represented in Eq. 5. 

 

𝑦𝑖̂, 𝑡 =  ∑ 𝑓𝑘(𝑥𝑖)
𝑡
𝑘=1   (5) 

 

where 𝑦𝑖̂, 𝑡 is the predicted output for data point 𝑥𝑖 at iteration 

𝑡, and 𝑓𝑘(𝑥𝑖) represents the prediction of the 𝑘 th weak learner 

(decision tree).  

 

XG Boost uses gradient boosting, where the subsequent 

weak learners are trained to minimize the gradients of the loss 

functions related to the negative gradients of the loss functions 

for the current predictions. This process ensures that the new 

trees focus on the data points that were previously 

misclassified, leading to improved model accuracy [34, 35]. 

 

Overall, the four base models - Logistic Regression, 

Linear SVM, SVM with RBF kernel, and XG Boost - serve as 

crucial benchmarks for power grid stability prediction. They 

provide a foundation for comparison against more 

sophisticated models, such as the proposed hybrid deep 

learning model, in terms of precision and generalization 

performances. By understanding the strengths and limitations 

of these base models, we can gain valuable insights into the 

behavior and capabilities of different classification algorithms 

for power grid stability prediction. 

 

4. Advanced Hybrid Deep Learning Model 

 

4.1 Problem Statement 

The problem statement necessitating the proposal of this 

concept is the lack of highly accurate and reliable methods for 

load forecasting and net load prediction in smart grids. 

Traditional forecasting techniques often struggle to handle the 

intricate and nonlinear nature of power grid data, leading to 

suboptimal grid stability and inefficient energy management. 

There is a critical need for an advanced predictive model that 

can effectively preprocess data, accurately forecast short-term 

and daily peak loads, and provide probabilistic net load 

predictions. This model should address the challenges posed 

by diverse load patterns, temporal variations, and uncertainties 

in power consumption. Developing a comprehensive hybrid 

deep learning approach integrating sophisticated techniques is 

essential to overcome these challenges and significantly 

improve power grid stability, enabling smarter and more 

efficient operation of energy systems in smart grids [36,37]. 

 

4.2 Data Preprocessing 

The suggested hybrid load forecasting model's effectiveness 

depends heavily on data preparation. To ensure that the load 

data is appropriately prepared for training, we employ two 

essential techniques: Ensemble Empirical Mode 

Decomposition (EEMD) and the Bisecting K-Means 

Algorithm for feature selection. 

 

EEMD is a data-driven methodology that separates the load 

data into a residue component and intrinsic mode functions 

(IMFs). Each IMF isolates a particular oscillatory pattern in 

the data, whereas the residue includes any residual trend and 

noise. This decomposition procedure has several benefits 

since it enables us to recognize and separate the important 

aspects from the load data. By obtaining the IMFs and residue, 
we can effectively segregate the load data into its constituent 

components, which are crucial for understanding the 

underlying dynamics and patterns in the data [38,39]. 

 

Furthermore, EEMD is particularly well-suited for dealing 

with complex and non-linear load patterns that may exist in 

the dataset. Through its ability to capture various oscillations 

at different scales, EEMD enables us to retain important 

information while eliminating noise and irrelevant variations. 

As a result, the load data becomes more amenable to analysis, 

leading to enhanced forecasting accuracy [40]. 

 

In addition to EEMD, the Bisecting K-Means Algorithm is 

employed for feature selection, which is an essential step in 

organizing the data for forecasting. The classic K-Means 

clustering method is modified by the Bisecting K-Means 

Algorithm, which effectively separates the data into clusters 

depending on their attributes. This process allows us to group 

similar load patterns together, leading to improved forecasting 

performance[41-45]. 

 

By clustering the load data, the algorithm helps in 

identifying common characteristics among different load 

profiles. This feature selection process ensures that the model 

can focus on the most discriminative and relevant attributes of 

the data, reducing noise and irrelevant information that could 

otherwise negatively impact the forecasting accuracy. 

 

The combination of EEMD and the Bisecting K-Means 

Algorithm streamlines the data preprocessing stage, resulting 

in a more refined and representative dataset. The processed 

data is then utilized for training the subsequent components of 

the hybrid model, including the Gradient-boosting based 

multiple kernel learning model and the Gated RNNs model. 

Through this comprehensive data preprocessing pipeline, we 

can effectively harness the power of the hybrid model to 
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achieve accurate and reliable load forecasting, contributing to 

the enhancement of power grid stability and smart grid 

operations. 

 

4.3 Multiple Kernel Learning 

The preprocessed data is then used to train a Gradient-

boosting based multiple kernel learning (MKL) model for 

short-term electric load forecasting. MKL combines the 

strengths of kernel methods and gradient boosting to identify 

complicated patterns in the loaded data. In Eq. 6, we represent 

the preprocessed data as a set of time series sequences: 

 

𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁}     (6) 

 

where 𝑥𝑖 represents the load data at time 𝑡𝑖 . MKL involves 

constructing a set of base kernels, each capturing a different 

aspect of the data. The model then learns the weights of each 

base kernel using gradient boosting, effectively assigning 

them different importance levels. 

The MKL objective is formulated as Eq. 7: 

 

𝑚𝑖𝑛
{𝜔,𝛾}

∑ 𝐿 (𝑦𝑖 , 𝑓(∑ 𝑤𝑗𝐾𝑗(𝑥𝑖, 𝑥𝑗) + 𝛾𝑀
𝑗=1 )) + 𝜆 ∑ ‖𝑤𝑗‖

1

𝑀
𝑗−1

𝑁
𝑖=1  

  (7) 

 

where 𝐿 is the loss function, 𝑓 is the regression function, 𝜔 are 

the weights of the kernels, 𝛾 is the bias term, 𝐾𝑗 are the base 

kernels, 𝑀 is the number of base kernels, and 𝜆 is the 

regularization parameter. 

 

4.4 Dynamic Time Warping Distance 

The proposed hybrid model uses Dynamic Time Warping 

(DTW) distance as a key strategy to cluster the output of the 

multiple kernel learning model, enabling precise daily peak 

load predictions. DTW is particularly well-suited for 

comparing time series sequences with varying lengths, 

making it highly relevant for this forecasting task. 

 

When applying DTW, the goal is to compare two time series 

sequences, X and Y, which might have different lengths and 

temporal alignments. Traditional distance metrics, such as 

Euclidean distance, are not well-suited for comparing 

sequences with varying lengths and temporal shifts, as they 

require the sequences to be of the same length and aligned in 

time. 

 

The DTW distance is computed as the minimum cumulative 

distance between the data points of the two time series that 

align optimally. To achieve this, a mapping function π is 

established, representing the set of matched data points 

between X and Y. The distance function, denoted as d, 

measures the dissimilarity between two data points, enabling 

the comparison of patterns at various time points. 

 

The purpose of DTW is to find the optimal alignment, 

represented by the mapping π, that minimizes the cumulative 

distance between the matched data points. This process allows 

DTW to discover similar patterns in the time series data, even 

when they are shifted or have varying lengths. By capturing 

these similar patterns, DTW enables accurate clustering of the 

time series data, contributing to improved forecasting 

accuracy [46,47]. 

 

In the context of daily peak load forecasting, DTW plays 

a crucial role in identifying patterns that might be repeated 

across different days, despite variations in load behavior and 

timing. By leveraging DTW distance-based clustering, the 

hybrid model can effectively group similar daily peak load 

patterns, allowing for more accurate and robust predictions. 

 

The integration of DTW into the hybrid model enhances 

the model's ability to identify temporal dependencies and 

similarities in the daily load patterns, ultimately leading to 

more reliable and precise forecasts. Thus, the method can 

make better predictions for future peak loads, contributing to 

the optimization of power grid operations and enhancing grid 

stability. Through its adaptive alignment and comparison of 

time series sequences, DTW strengthens the forecasting 

capabilities of the proposed hybrid model, making it a 

valuable asset in the domain of load forecasting for smart 

grids. Following that, Dynamic Time Warping (DTW) 

distance is used to cluster the output of the multiple kernel 

learning model. DTW is useful for daily peak load forecasting 

since it compares time series sequences of various durations. 

Given two time series 𝑋 and 𝑌, the DTW distance is computed 

as Eq. 8: 

 

𝐷𝑇𝑊(𝑋, 𝑌) =  min
𝜋

∑ 𝑑(𝑥𝑖 , 𝑦𝑗 )(𝑖,𝑗)𝜖𝜋    (8) 

Where, 𝜋 represents the set of matched data points between 𝑋 

and 𝑌, and 𝑑 is the distance function. DTW helps identify 

similar patterns in the time series data, enabling more accurate 

clustering for forecasting.   

 

4.5 Gated RNNs 

Gated Recurrent Neural Networks (RNNs) play a crucial 

role in this research as they are employed for daily peak load 

forecasting. A class of deep learning models known as RNNs 

is made to handle sequential data, such time series. They are 

particularly adept at capturing long-term dependencies, which 

is vital in load forecasting as electricity consumption patterns 

often exhibit temporal relationships. The gating mechanism of 

Gated RNNs, which enables them to effectively keep or forget 

data from prior time stages, is what makes them unique. This 

gating method helps classic RNNs avoid the vanishing 

gradient problem, which can prevent them from successfully 

learning long-term dependencies. It is represented by 

components like the LSTM (long short-term memory) and 

GRUs (gated recurrent units). By addressing this issue, Gated 

RNNs excel at capturing complex temporal patterns in the 

daily peak load data, leading to improved forecasting 

accuracy. The model is a potent tool for daily peak load 

prediction in the context of electric grid stability and smart 

grid management because of its capacity to selectively analyze 

and update data, which enables it to respond dynamically to 

changing load patterns. Moreover, Gated RNNs can uncover 

complex load patterns and relationships that may not be 

visible through conventional statistical techniques because 

they are a member of the larger family of Recurrent Neural 

Networks, which affords them the expressive ability and 

representative effectiveness of neural networks. By 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. S. Selvi et al., Vol.14, No.2, June, 2024 

 267 

integrating Gated RNNs into the hybrid model, the research 

aims to capitalize on their ability to model time-dependent 

data effectively, contributing to more precise and reliable 

daily peak load predictions in smart grids [48]. 

 

4.6 Bayesian Deep LSTM Neural Network 

The utilization of the Bayesian Deep LSTM neural networks 

is a significant advancement in the research, enabling 

probabilistic residential net load forecasting. This model 

builds upon the output of the Gated RNNs, incorporating 

Bayesian principles to enhance the uncertainty quantification 

in predictions. In the Bayesian framework, the weights of the 

LSTM neural network are treated as random variables, 

allowing us to model their uncertainty. By treating the weights 

as probabilistic, we gain the ability to update their 

distributions based on the observed data, following Bayes' 

rule. This results in a more robust and flexible neural network 

that can adapt to varying data patterns and handle uncertainty 

more effectively. 

 

To perform probabilistic forecasting, a bayesian deep LSTM 

neural network leverages the posterior distributions of the 

weights, which reflects our updated beliefs about the model's 

parameters. By sampling from this posterior distribution, we 

generate multiple predictions for the net load. These 
predictions form an ensemble, which accounts for the inherent 

uncertainty in the model's parameters and input data. 

 

The ensemble of predictions provides us with a predictive 

distribution of the net load, encompassing a range of possible 

outcomes along with their associated probabilities. This 

distribution represents the uncertainty in our forecasting, 

acknowledging that the net load's future behavior might not be 

precisely determinable due to various external factors and 

unpredictable events. 

 

The Bayesian deep LSTM neural network's probabilistic 

forecasting is a valuable asset in smart grid management, as it 

enables more informed decision-making under uncertainty. 

By considering the range of potential outcomes and their 

probabilities, grid operators and stakeholders can devise better 

contingency plans, optimize resource allocation, and improve 

overall grid stability. Additionally, the Bayesian approach 

fosters transparency and interpretability, as it provides a clear 

representation of the model's uncertainty in its predictions, 

which is essential for building trust and confidence in its 

application. 

 

By incorporating the bayesian deep LSTM neural 

networks into the hybrid method, this research aims to deliver 

a comprehensive and powerful tool for residential net load 

predictions in smart grids. The integration of advanced 

Bayesian principles with LSTM, a state-of-the-art deep 

learning architecture, elevates the model's forecasting 

performance and uncertainty quantification capabilities, 

making it a valuable asset in ensuring a stable and reliable 

power grid operation. 

 

5. Dataset and Experimental Evaluation 

 

Google provides an online Graphical Processing Unit 

(GPU) called "Google Colab," which is used for the 

experiment. A desktop PC running Windows 8.1 and equipped 

with a core I3 CPU is utilized. Python 3.7 is the programming 

language used for this. 

The "electrical grid stability simulated dataset," originally 

created by Vadim Arzamasov at the Karlsruhe Institute of 

Technology in Germany, has been improved for use in this 

work. The University of California (UCI) machine-learning 

repository graciously accepted the dataset as a donation, and 
it is now housed there and available for research. The dataset 

itself comprises several features related to the power grid 

stability assessment. The features are designated as "tau1," 

"tau2," "tau3," and "tau4", which stand for the various smart 

grid players' reaction times. Other characteristics include "p1," 

"p2,," "p3,," and "p4", which stand for the nominal amount of 

power that each network participant produces or consumes. 

The 'g1,' 'g2,' 'g3,' and 'g4' features indicate the price elasticity 

coefficients of the respective network participants. The 'stab' 

feature reflects the largest real portion of the characteristic 

differential equation root, and the'stabf' feature is a categorical 

binary label that denotes whether the system is stable or 

unstable. The dataset contains information on the stability of 

the power grid under various conditions, making it suitable for 

training and evaluating advanced deep learning models to 

enhance power grid stability in smart grids [49, 50]. 

To understand the distribution of stability labels in the 

original dataset, a bar graph was plotted to visualize the split 

between "unstable" (label 0) and "stable" (label 1) 

observations.  
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Fig.1. Distribution of Stable and Unstable labels 

 

The Fig.1 illustrates that approximately 63.8% of the 

observations in the dataset are labeled as "unstable," while 

about 36.2% are labeled as "stable." This information is 

crucial to assess the class distribution and potential class 

imbalance in the dataset. 

To find possible links and patterns in any deep learning 

model development, it is crucial to look into the correlation 

between the numerical characteristics and the dependent 

variable ('stabf'). Furthermore, examining the correlation 

between numerical characteristics aids in identifying any 

possible collinearity problems that might affect the 

functionality of the model. The performance matrix is used to 

evaluate the proposed Hybrid deep learning model are 

confusion matrix, accuracy, precision, recall, and F-measure. 

These metrics are fundamental in assessing the model's 

predictive capability and effectiveness in handling 

classification tasks. 

Confusion Matrix: A confusion matrix is a tabular 

representation that illustrates that a classification model 

performs by contrasting expected and actual results. It consists 

of four elements: true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN). These components aid 

in comprehending how well the model performs in terms of 

accurate and inaccurate predictions. 

Accuracy: The ratio of accurately forecasted occurrences to 

total instances is used to determine accuracy, which assesses 

the model's overall correctness. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP +  TN) 

(TP +  TN +  FP +  FN) 
 

Precision: It is the proportion of correctly anticipated positive 

cases out of all expected positive cases. Reducing false 

positives is its primary objective. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall: It gauges how well the model can recognize every 

positive example. The ratio of accurately predicted positive 

instances to actual positives is computed. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
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F-measure: the average of the harmonics of recall and 

precision. By integrating recall and precision into a single 

score, it offers a fair evaluation of the method’s effectiveness. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

These metrics are essential in evaluating the Proposed model's 

performance in classification tasks, providing insights into its 

accuracy, capability to minimize false predictions, and ability 

to capture true positives and negatives. 

 Fig.2 displays the results of a heatmap analysis of the 

association between the dependent variable ('stabf') and the 12 

numerical characteristics. 

 

Fig.2. Correlation Map of Dependent Variable 

 

The heatmap gives a summary of the relationships 

between the 12 numerical characteristics and the dependent 

variable ('stabf'). To test its link with "stabf," the alternative 

dependent variable ("stab") was also added. The correlation 

between 'stab' and 'stabf' is found to be significant, with a 

value of -0.83. This high correlation supports the decision to 

drop 'stab'. Furthermore, it is observed that there is above-

average correlation between the feature 'p1' and its elements 

'p2,' 'p3,' and 'p4,' which was expected due to their 

relationships in the dataset. However, the correlation is not 

significant enough to warrant the removal of any of these 

features. Overall, the correlation graph helps with the data 

preparation and feature selection stages of the suggested 

advanced deep learning model for improving power grid 

stability in smart grids by offering insightful information 

about the correlations between the numerical characteristics 

and the dependent variable. 

 

6. Results and Discussion 

A number of different conventional machine learning 

models were assessed and compared to the performance of the 

suggested improved deep-learning method for improving 

power grid stability in smart grids. Table 3 presents the 
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efficacy of the suggested model concerning f1-score, recall, 

and precision. 

 

Table3. Comparative analysis of methods 

 

Metrics Logistic Regression Logistic Regression SVM-RBF Kernel XG Boost Hybrid deep 

learning model 

Stable Unstable Stable Unstable Stable Unstable Stable Unstable Stable Unstable 

Recall 93% 97% 94% 96% 94% 95% 97% 94% 99% 99% 

Precision 96% 94% 95% 94% 92% 96% 92% 94% 98% 100% 

Accuracy 94% 95% 94% 94% 92% 96% 94% 96% 98% 99% 

  

 

 

Fig.3. Comparative analysis using performance metrics 

Fig.3 presents the performance metrics across different 

models for predicting stable and unstable states in a power grid 

system. In the comparison, the hybrid deep learning model 

demonstrates superior performance across all metrics. 

Specifically, for stable states, it achieves high recall (99%) and 

precision (98%), indicating its ability to effectively identify 

true positives and minimize false positives. Similarly, for 

unstable states, the hybrid model showcases exceptional recall 

(99%) and perfect precision (100%), highlighting its 

capability to accurately detect all instances of unstable states 

without any false positives. 

Comparatively, traditional machine learning models such as 

logistic regression, linear SVM, SVM with RBF-kernel, and 

XG-boost perform reasonably well but generally fall slightly 

short in precision or recall, especially for specific states. For 

instance, XG Boost achieves high recall but relatively lower 

precision for stable states, while SVM with RBF Kernel has a 

higher precision but a slightly lower recall for unstable states. 

However, these models still maintain a commendable level of 

accuracy, mostly ranging from 92% to 96%. 

In contrast, the hybrid deep learning model consistently 

outperforms these traditional models across all metrics, 

demonstrating its capability to achieve high accuracy (98%) 

while maintaining exceptional precision and recall rates for 

both stable and unstable states. Overall, the hybrid deep 

learning model exhibits remarkable predictive power and 

reliability, making it a promising approach for power grid 

stability prediction compared to conventional machine 

learning methods. 

 Table 4 presents the findings and displays each model's 

training accuracy and validation accuracy. 

 

Table4. Comparison Table for Model Accuracy 
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S.No Model Accuracy (%) 

Training Accuracy Testing 

Accuracy 

0 Logistic Regression 80.56 75.29 

1 Linear SVM 87.12 82.87 

2 SVM-RBF Kernel 92.34 90.12 

3 XG-Boost 94.72 92.62 

4 Hybrid deep learning 

model 

99.94 99.13 

 

The results demonstrate that the hybrid deep learning 

model achieved remarkable accuracy in both training and 

validation sets, outperforming all the other traditional machine 

learning models considered in this experiment. The proposed 

model attained the impressive training accuracy of 99.94% 

and the validation accuracy of 99.13%. To visualize the 

comparison of original accuracy and validation accuracy for 

each model, a line graph was plotted. 

 

Fig.4. Plot of Original Value and Model Predicted Value 

The x-axis in Fig.4 shows the various models, while the 

y-axis shows the accuracy percentage. The orange line 

indicates the validation accuracy, while the blue line indicates 
the training accuracy. The line graph shows that the training 

accuracy continually rises with each model, demonstrating the 

models' capacity to match the training data. The hybrid deep 

learning model's unusual ability to generalize efficiently to 

novel, previously unknown data, as proven by the small 

variation in training and validation accuracy, distinguishes it. 

The graph clearly illustrates that the hybrid deep learning 

model achieves the highest validation accuracy among all the 

models, thereby demonstrating its robustness and 

effectiveness in power grid stability enhancement for smart 

grids. 

The trials' findings clearly demonstrate that the suggested 

hybrid deep learning model outperforms more established ML 

techniques including logistic regressions, linear SVM, SVM 

with RBF-kernel, and XG Boost. The hybrid deep learning 

model showcases outstanding accuracy in both training and 

validation sets, indicating its capability to handle complex 
patterns in the power grid stability dataset. The hybrid nature 

of the model, which combines multiple techniques such as 

gradient-boosting based multiple kernel learning, dynamic 

time warping distance, gated RNNs, and Bayesian deep LSTM 

neural network, proves to be highly effective in capturing the 

intricate relationships within the data. This combination of 

techniques allows the model to make accurate short-term 

electric load forecasts and probabilistic residential net load 

forecasts, ultimately leading to improved power grid stability 

in smart grids. Moreover, the high accuracy achieved by the 

hybrid deep learning model is of utmost significance in real-

world applications. With a validation accuracy of 99.13%, the 

model can provide reliable and precise forecasts, which are 
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essential for smart grid operators in making critical decisions 

regarding energy supply and demand management.  

Limitations of the Proposed Hybrid Deep Learning Model 

are as follows. Deep learning models can be computationally 

expensive, especially with large and complex datasets. 

Processing large-scale power grid data in real-time may 

require substantial computational resources. For training, 

deep-learning methods often need a lot of labeled data. Such 

datasets can be difficult to obtain and time-consuming to label. 

Deep learning models frequently have interpretability issues, 

which makes it challenging to communicate the decision-

making process to interested parties like smart grid operators. 

The hybrid model may require extensive hyperparameter 

tuning to optimize its performance, which can be a labor-

intensive process. Deep learning models are sensitive to data 

quality, and preprocessing steps such as feature engineering 

and normalization are critical for achieving optimal results. 

Despite these limitations, the proposed advanced deep 

learning model's exceptional accuracy and ability to handle 

dynamic and time-dependent aspects of the power grid makes 

it well-suited for real-time applications. Hence, the proposed 

advanced deep learning model has demonstrated its 

effectiveness in enhancing power grid stability in smart grids. 

The model's high accuracy and robustness make it a valuable 

tool for smart grid operators and energy providers, enabling 
them to make informed and efficient decisions, leading to a 

more stable and reliable power grid infrastructure. The 

research lays a strong foundation for the development of deep 

learning applications for smart grids and intelligent, self-

governing energy management systems. 

 

7. Conclusion and Future Works 

The research introduces an innovative hybrid deep 

learning model tailored for fortifying power grid stability 

within smart grids. This model adeptly merges cutting-edge 

methodologies, ensuring precise short-term electric load 

forecasting and probabilistic residential net load projections. 

Evaluation utilizing an augmented version of the "Electrical 

Grid Stability Simulated Dataset" evidenced the model's 

superiority over conventional techniques, outperforming 

logistic regression, linear SVM, SVM with RBF kernel, and 

XG Boost in both training and validation sets. 

Contributing significantly, the research presents a hybrid 

deep learning model amalgamating ensemble empirical mode 

decomposition, Bisecting K-Means Algorithm, multiple 

kernel learning, dynamic time warping distance, and gated 

RNNs. This synthesis empowers the model to proficiently 

tackle intricate data dynamics, providing accurate load 

forecasting. Moreover, the model's application in smart grid 

stability enhancement offers real-time, precise forecasting, 

proving pivotal for grid operators in ensuring a stable and 

reliable power infrastructure. Its incorporation of probabilistic 

residential net load forecasting equips decision-makers with 

uncertainty estimates for risk assessment and informed 

decision-making. 

Future prospects for this research involve refining the 

proposed hybrid deep learning model and its practical 

application in power grid stability and load forecasting. These 

encompass addressing class imbalance within datasets, 

enhancing model interpretability through tools like LIME and 

SHAP, exploring transfer learning for improved 

generalization, employing ensemble methods for heightened 

robustness, validating the model with real-world data, and 

developing online learning capabilities. By addressing these 

facets, the proposed hybrid deep learning model can advance, 

offering substantial contributions to real-world smart grid 

environments, fostering a more stable, reliable, and 

sustainable energy landscape. 
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