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Abstract- Medium voltage industrial consumers for the demand up to 40 kW are experiencing several issues, including low 

power factor, increasing imbalance current, rising neutral current, limited utilization of active filters, and growing total harmonics 

distortion. Since most of the loads are current driven and prone to problems, this paper proposes a comprehensive solution using 

a straightforward analytical approach. The proposed solution involves a three-phase, 380 V supply system equivalent to a grid-

tied renewable medium voltage supply system with both balanced non-linear loads and unbalanced linear loads. The problem is 

addressed by utilizing specifically designed compensators and de-tuned filters. Firstly, emphasis is placed on current balancing 

and power factor improvement up to unity. This is achieved by employing a compensating network with carefully designed LC 

components. Secondly, a harmonics assessment is conducted on the total harmonics distortion of current and the identification 

of dominant characteristic harmonics through network simulations. Thirdly, the individual harmonics distortion, which indicates 

the harmonics content in each phase, is obtained from the simulation.  Frequency scanning is used to identify harmonics 

resonance in 5th-order harmonics in composite loads. The harmonics impedance values of the 5th-order harmonics are reduced 

by detuning the selected frequency between 3 % and 5 % in the design of filters. To validate the proposed solution, a test network 

is simulated using MATLAB Simulink, and results are verified for the recommended values of standard IEEE519. 

Keywords Total Harmonics Distortion (THD), Individual Harmonics Distortion (IHD), Harmonics Impedance, De-Tuned 

                   Filter, % Unbalance 

 

1. Introduction    

Industries consume power based on the category of consumers 

such as commercial, start-up, and small-scale industrial 

consumers prescribed by the supplier. The statutory 

requirements such as power demand, power factor, and 

harmonics vary depending on the category. The imposed 

parameters are challenging the consumers, connected with 

combined linear and non-linear loads. In effect those problems 

such as increased neutral current, THD, low power factor, and 

poor demand management. Many research papers discussed 

on implementation of Shunt Active Power Filters and Voltage 

Source Inverters which provide a universal solution to non-

linear loads. When combined with non-linear as well as linear 

loads, these types of loads have various effects when 

employed with a voltage source inverter [1]. The problem with 

the three-phase four-wire supply is that current flows from the 

load into the neutral, harming the conductor. A proper inverter 

controller is essentially required for reactive power correction 

and harmonics reduction. [2-4].  

The above load draws unbalanced currents from the 

source which creates additional problems such as the 

generation of third harmonics, increased neutral current, etc., 

and the varying rectifier loading condition is compensated for 

harmonics using active filters.[5]. The voltage unbalances 

generated by a current imbalance in single-phase loads in 

distribution networks are examined with varied features in  

order to preserve operational dependability [6]-[9]. A three-

phase balanced and unbalanced load flow is carried out with a 

conventional backward and forward sweep technique.[10]. 

Non-linear reactive unbalanced loads are considered with 

Unified Power Quality Conditioner using an improved control 

method.[11]. A control scheme with a common inner inductor 
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current loop is used for both the positive and negative 

sequence components, for the unbalanced load and source 

emulations. [12, 13]. The industries drawing power at high 

voltage levels are primarily focused on limiting the polluting 

harmonics level at the Point of Common Coupling. % current 

THD is reduced due to the impedance of the feeding 

transformer. Three-phase compensators are used for 

balancing, reactive power compensation and mitigation of 

harmonics separately in the distribution system. [14]-[16]. 

Higher-order harmonics are produced by speed drives with 

higher torque applications in the marble industry and drilling 

rigs [17]. Current controlled hybrid filters to overcome the 

problems due to harmonics.[18]. Improved control algorithms 

and appropriate current control employed in active filtering 

methods for load balancing as well as reactive power 

compensation investigated within these publications [19-21]. 

Numerical problems are solved by taking unbalanced linear 

loads to balance and improve the power factor [22]. The 

failure of power factor improvement capacitors and its 

contacts are due to high voltage predominantly causing 

insulation failure and resulting phase and ground faults. It is 

needed to study the network with the supply system using a 

frequency scan [23-28]. An advanced thyristor-switched 

detuned capacitor is used to improve harmonic filtering in the 

operation of AC single-phase spot welding [24,25]. LCI drive 

passive filter is used for eliminating detuning effects, 

resonance elimination, and harmonic loading of capacitors, in 

an Iranian large copper mine company [25-27] 

 

 

 

2. Method 

2.1.Network Description Load Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smart Photovoltaic inverter for resonance mitigation is a 

novel approach using virtual detuner. The power quality 

describes network resonance as a major contributor that has an 

impact on harmonic levels  [28-29]. PV Transformer 

Reliability in Unbalanced Conditions is enhanced for Solar 

Power Plants. [31]. PS-PWM is used to reduce THD in a PEC-

9 inverter, integrating active capacitor balancing and 

redundant switching states. [32] Sensorless DC voltage 

regulation method combined with single-phase p-q theory for 

improved power quality in shunt active power filters to reduce 

sensor and costs. [33] Matrix converter-based D-STATCOM 

is used to mitigate LED-induced harmonics in low voltage 

distribution networks. [34] A simplified model of a SAPF for 

power quality enhancement in a modern grid includes a single 

current control loop with an LCL filter output as feedback, 

using a PI controller confirm its effectiveness. [35] 

This paper considered a 3P-4W load network 

combined with linear and nonlinear loads. As most of the 

research is done with common loading, this work is taken with 

different operating conditions. Also, the load balancing and 

reactive power compensation are done simultaneously in the 

test network. This work is divided into three parts. Part 1 is the 

modeling of test work in different combinations with a stiff 

supply system in MATLAB. Simulink. Part 2 is the design of 

a compensator for load lancing and reactive power 

compensation to determine the reduction in unbalance and 

improvement in power factor. Part 3 evaluates the THD, IHD, 

and impedance using frequency to avoid resonance. The 

results are verified with the recommended IHD limit 

prescribed by IEEE 519-2014 [30]. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Three-phase four-wire network 



INTERNATIONAL JOURNAL of ENERGY RESEARCH  
R. Durgayandi and M. Narayanan, Vol.14, No.3, September, 2024 

 470 

Table 1. R, X values of Linear and Non-Linear Loads 

Table 2. Three-Phase Supply Parameters 

I0  

=  
{(Ga + a2 Gb + a Gc) + j (Ba + a2 Bb + a Bc)} Vph

√3
 

(2) 

I+  =  
Ia  + a Ib  + a2 Ic

√3
 

(3) 

I+  =  {(Ga + Gb + Gc) + j (Ba +  Bb +  Bc)} √3  Vph  (4) 

I−  =  
Ia  + a2 Ib  + a Ic

√3
 

(5) 

I−  

=  
{(Ga + a2 Gb + a Gc) + j (Ba + a Bb + a2 Bc)} Vph

√3
 

      

(6) 

Table 2a. kW rating of Composite Loads 

 

The industries are working with different supply 

voltage according to their power demand. The nominal 

medium and low voltages are 381V and 220 V. The source 

data for the three-phase four-wire supply system are given in 

Table 2.  As per Table 1. the R and X values for the unbalanced 

linear and balanced non-linear loads in each phase are used in 

the network. And the composite loads are rated 220 V, and 

0.87 power factor with the power rating as given in Table 2a.  

A diode bridge rectifier is used as a source of harmonics at the 

load side. Figure 1. Shows the test network considered for the 

study with single-phase loads rated 220 V. Unequal linear 

single-phase load impedances are considered for an 

unbalanced linear loading. The % unbalance of voltage is 

verified with the limit of IEEE 112 (1991). The drawn 

unbalanced current due to different loads are obtained after 

MATLAB simulation. 

 

2.2 Design of Compensator for Unbalance Composite Load 

The sequence quantity of load currents is considered 

in equations (1), (3), and (5). As per equations (2), (4), and (6), 

it is represented in terms of susceptance values of known 

unbalanced load impedances. The balanced non-linear load is 

considered constant.    

The sequence components of the unbalance load 

current and compensator currents cancel each other and the 

sum of following components are made equal to zero. The 

susceptance values for the star and delta configuration are 

obtained in equations (7)-(12). 

   Ba compY =  − Ba +  (Gb − Gc)/ √3                             (7) 

Bb compY =  − Bb +  (Gc −  Ga)/ √3                              (8) 

Bc compY =  − Bc + (Ga −  Gb)/ √3                            (9)  

Bab comp∆ = (2/3)(Ga − Gb)/√3                          (10) 

Bbc comp∆ = (2/3)(Gb −  Gc)/√3                          (11) 

Bca comp∆ = (2/3)(Gc − Ga)/√3                          (12) 

The designed values of LC obtained from equations 

(7)-(9) are connected as star and from equations (10)-(12) are 

connected as delta in the compensating network as shown in 

Fig 2. The line loss components are introduced in between 

load, compensator and supply. This network reduces the % 

unbalance due to unbalanced linear load and composite loads. 

It improves the power factor after the composite loads 

connected into the load network. Primarily these two 

requirements for any small-scale industries are fulfilled from 

the passive compensating network. The designed LC values 

are based on linear loads and the % unbalance is 

comparatively less after non-linear loads are combined. 

 

 

 

 

 

 

 

 

 

 

Non-Linear 

Load 
Load -1 Load -2 Load -3 

R(Ω) X(Ω) R(Ω) X(Ω) R(Ω) X(Ω) R(Ω) X(Ω) 

80 18.8 

22 16.5 15 6.2 6.4 4 

12.8 13.1 17 12.4 7 5.3 

13.2 17.6 20 31.4 11 5.3 

Load -4 Load -5 Load -6 

3.5 1.9 3.1 1.9 3 1 

11 5.3 9.7 8.6 5.5 4.1 

5.4 4.2 8.1 3.4 16.5 14.6 

Supply Voltage 

(Line) 
SCC (MVA) X / R 

38 100 10 

Composite 

Loads 
Phase a Phase b Phase c 

1 1.9 2.1 1.8 

2 2.9 2.1 1.3 

3 3.7 3.2 3.1 

4 4.8 3.1 3.4 

5 4.7 2.5 3.7 

6 5.8 3.6 1.9 

I0  =  
Ia + Ib + Ic

√3
 

(1) 
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       Fig 2. LC Compensating network 

 

Table 3. LC values of Compensator for composite loads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The LC values obtained from equations (7)-(12) are listed in 

above Table 3. which shows components forming star and 

delta connections. The star connections are predominantly 

used with capacitors to improve power factor of corresponding 

connected loads. The condition for the improvement of power 

factor is to unity. Later these capacitor values are used to 

design harmonics filters without changing its designed values 

for the compensator. The delta connected LC elements are 

mainly to balance the composite loads to the extent 

considerably.  

 

2.3 Design of De-Tuned Harmonics Filter 

 

The reason for the failure contactors in controllers 

and abrupt reduction of capacitance values or failures are 

found in industries due to harmonics resonance occurring at 

characteristic harmonics. This is due to increase of impedance  

 

 

at particular harmonics. The retained values of capacitors as 

given in Table 3. are used to design tuned filters with the 

predominant harmonics (5th order) obtained from the FFT 

output of MATLAB Simulink for the corresponding 

composite loads in the test network. The equation (13) is used 

to design the % detuned reactor for the values between 3 % 

and 5 % of the tuning value for the elimination of 5th order 

harmonics.    

 

𝐿 =   
1

4 × 𝜋2 × 𝑓ℎ
2 × 𝐶

                                                        (13) 

 

Table 4&5. shows the values LC detuned between 3% and 

5% for the reduction of harmonics impedance for 5th order 

harmonics.   

 

 

Composite 

Load 

Network 

Elements 
STAR DELTA 

1 
L (mH) - - - 912.6 - 1550.8 

C(MFD) 89.5 121.03 99.14 - 13.3 - 

2 
L (mH)    - - 27.3 

C(MFD) 119 11.03 106.25 22.7 29.4 - 

3 
L (mH) - - - - - 214.5 

C(MFD) 254.9 148 152.8 26.4 20.8 - 

4 
L (mH) - 126.2 - - 198.8 78.6 

C(MFD) 305 - 555.9 180 - - 

5 
L (mH) - 134.8 - - 175.1 63.9 

C(MFD) 370.8 - 465.3 216.7 - - 

6 
L (mH) - 47.9 - - - 31.1 

C(MFD) 470.8 - 432.5 224.4 101.5 - 
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Table 4. LC values of Detuned harmonics Filters for Composite Loads 1.2, and 3 

 

Phase % Detuning Load - 1 % Detuning Load - 2 % Detuning Load - 3 

L C L C L C 

a 

3 % 

4.8 89.5 

4 % 

3.7 119 

5 % 

1.8 254.9 

b 3.6 121.03 36 11.03 3 148 

c 4.3 99.14 4.1 106.25 2.9 152.8 

  

Table 5. LC values of Detuned harmonics Filters for Composite Loads 4,5, and 6   

 

3.  Results and Discussions 

The network shown in Fig 3. having six composite 

loads with LC values as given in Table. and a diode bridge 

rectifier connected as balanced non-linear load. Series Line 

loss components assumed between loads, Compensator and 

supply system. Simulation is done for 3 seconds for every 

composite loads one after another with and without 

compensator whose LC values obtained from Table. % 

unbalance currents and improved power factors taken as 

output from MATLAB Simulink and compared for various 

operating composite loads. 

The star configured compensator is used for detuned 

LC filter for taking harmonics impedance as output for 

comparison among loads with and without filters. The 5th 

order harmonics is selected for the result and comparison for 

harmonics impedance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig 3. Test network with composite loads and compensating network 

 

 

 

 

 

 

 

Phase % Detuning Load - 4 % Detuning Load - 5 % Detuning Load - 6 

L C L C L C 

a 
5 % 

1.5 305 
5 % 

1.2 370.8 
5 % 

0.9 470.8 

b 126.2 3.9 134.8 4.7 47.9 0.13 

c 0.8 555.9 0.9 465.3 1.03 432.5 
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3.1 Composite Load with and without Compensator 

Figure 4. shows the difference in reduction of % unbalance 

current with corresponding composite loads. Reduction in 

unbalance is found decreasing from 90 % to 60 % with 

increase of % unbalance from 10 % to 40 %. It is 

predominantly more at lower values of unbalanced loading. 

 

 

 

 

 

 

 

Fig 4. Average % Unbalance with and without 

Compensator for six loads 

Figure 5. shows the improvement of power factor in different 

composite loads when connected with and without star 

connected compensated in the test network. All the loads were 

improved with the power factor closer to unity.  

 

 

 

 

 

 

 

 

Fig  5. Power factor improvement in composite loads 
 

3.2  THD Analysis 

The test network is run for harmonics analysis to obtain % 

current THD in individual phases for the corresponding 

composite loads. As per IEEE 519, for the minimum ratio of 

current, the individual harmonics distortion is 4 % limiting 

to the harmonics order between 3 and 11. This value is 

verified with the operation of composite loads and filter 

connected.  Figure 6. shows the reduction of current THD 

after the detuned filters connected for the corresponding 

composite loads. The average values of three phase are taken 

for the result and compared among the loads. The increase 

% reduction of current THD from 60 % to 90 % with increase 

of unbalance of loads from 10 % to 40 %. The numerical values 

of % THD in individual phase with and without filters are 

tabulated in Table 6. 

Fig 

Fig. 6. Average value of Current THD (%) 

Table 6. Values of % THDI with / without Detuned filter - 

Phase wise 

 

3.3 Frequency Scan 

Harmonics measurement is required to track the 

resonance for avoiding failure of capacitors used for improving 

power factor and reducing the stress on implementation of shunt 

active power filter. 5th order harmonics impedance is found 

predominantly high in frequency scan of different composite 

loads. For that, reactor value is so detuned to the value between 3 

% and 5 % of the 5th order tuning frequency. After the value 

designed and connected into the test network, output from 

harmonics impedance measurement in MATLAB to determine 

the reduced value of impedance to avoid harmonics resonance in 

the network.    

Figure 7 & 8 shows the reduction of 5th order harmonics 

to avoid harmonics resonance in individual phases corresponding 

to composite loads. In phase a, Load -2 & 5 have larger reduction 

of impedance of about 96.5 %. In phase b, Load – 4 & 5 have got 

less reduced about 25 % and 8.7 % respectively. All other loads 

in phase b have got considerably above 85 %. The simulation 

result only for composite load-1 is presented in the Fig 9 – 14. 

Fig.16 & 17 shows the variation of impedance in phase a with and 

without detuned filter respectively. Similarly for phase b & c 

shown in Fig 18 – 21. 

5.3 5.4

1.8

1.25
1.48

1.73
2.07

2.65

0.56
0.29 0.29 0.23

Load -1 Load -2 Load -3 Load -4 Load -5 Load -6

Before Filter

After Filter

Loads 
Before Detuned Filter After Detuned Filter 

a b c a b c 

1 5.6 1.0 4.6 2.5 5.6 2.6 

2 3.2 2.0 5.1 3.1 7.9 2.7 

3 1.5 0.4 1.9 0.4 1.9 0.7 

4 0.7 0.1 1.7 0.6 1.3 0.7 

5 0.8 0.1 2.3 0.6 1.3 0.1 

6 0.5 0.2 1.6 0.2 3.1 0.2 
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             Fig 7   5th order Impedance(Ω)-phase a                      Fig 8 5thorder Impedance(Ω) – phase b  
 

 

 

 

 

 

 

 

 

 

 

              Fig 9.  Frequency Scan in Phase a – Before filter                             Fig 10.  Frequency Scan in Phase a – After filter  

 

 

 

 

 

 

 

 

 

 

 

 

    Fig 11.  Frequency Scan in Phase b – Before filter                              Fig 12. Frequency Scan in Phase b – After filter 

 

 

 

 

 

 

 

               

 

       

            

               Fig 13. Frequency Scan in Phase c – Before filter                            Fig 14.  Frequency Scan in Phase c – After filter 
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4.  Real Time Simulation Results  
The test network is simulated for in 0.3 s for each group. The 

compensator is switched ON for 0.1 s in the middle of each 

interval. THE MATLAB Simulink results along with 

Hardware In Loop results were compared in Figure 22 to Figure 

25 for the unbalanced load current and Figure 25 to Figure 22 for 

compensating current for all loads. 

        
 

 

 

 

 

 

 

 

 

 

 

 

             Fig 15. Load current – Loads – 1, 2, and 3                                   Fig 16 Load current – Loads – 1, 2, and 3 – RT Result 

 

 

 

 

 

 

  

 

 

 
           Fig 17  Load current – Loads – 4, 5, & 6                                         Fig 18. Load current – Loads – 4, 5 & 6 - RT Result 

 
 

 

 

 

 

 

 

 

 

 

 

 
             Fig 19. Compensating current – 1, 2, & 3                                    Fig 20. Compensating current – 1, 2 & 3 - RT Result 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig 21. Compensating current – 4, 5, & 6                            Fig 22. Compensating current – 4, 5 & 6 - RT Result 
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5. Comparative Analysis 

 

 

 

 

 

 

 

 

 

 

 
Fig 23. Percentage unbalanced current measured in a leather  

            Tannery  

Real-time measurements are shown in Figure 23 taken in 

a leathery tannery using FLUKE 434 Series II. The percentage 

of unbalanced current was found to vary between 0.6 % and 

5.9 %. The test network considered more than these values for 

the result analysis.  

Table 7. Efficiency of the supply system  

Sl.No. 

Average 

current 

without 

Filter 

Average 

current 

with 

Filter 

Difference Efficiency 

1 10.2 0.67 9.53 70.2 

2 26.9 8.26 18.64 77.2 

3 10.54 1.49 9.05 79 

4 24.15 2.76 21.39 77.2 

5 30.01 5.84 24.17 79 

6 44.48 16.62 27.86 91.5 

 

In relation to the average source rms current, Table 7 

compares efficiency with and without a detuned filter. 

Efficiency was found to be higher with a higher percentage 

imbalance and current magnitude in composite load groups 

Table 8. Overall comparison of unbalanced current and  

               power factor 

.Loads 

Without 

Compensator 

With  

Compensator Reduction 

(%)  UB 

(%) 

Power 

Factor 

 UB  

(%) 

Power 

Factor 

1 10.2 0.83 0.6 0.99 93.3 

2 26.9 0.87 8.2 0.99 69.3 

3 10.5 0.88 1.4 0.99 85.8 

4 24.1 0.87 2.7 0.99 88.5 

5 30.0 0.88 5.8 0.99 80.5 

6 44.4 0.89 16.6 0.93 62.6 

The Table 8 shows that the percentage reduction of 

unbalance is high in lower values of current and vice versa. 

The less difference in power factor determining the efficiency 

high. 

 

 

Table 9. Overall comparison of percentage current THD - 

Phase wise 

Loads 

Without De-Tuned 

Filter 
With De-Tuned Filter 

Phase 

a 

Phase 

b 

Phase 

c 

Phase 

a 

Phase 

b 

Phase 

c 

1 5.6 4.68 5.64 1.04 2.57 2.6 

2 3.2 5.1 7.91 2.09 3.13 2.73 

3 1.53 1.94 1.99 0.49 0.49 0.71 

4 0.73 1.72 1.32 0.16 0.64 0.07 

5 0.75 2.39 1.31 0.12 0.67 0.08 

6 0.46 1.64 3.1 0.24 0.23 0.23 

 

6. Conclusion 

The test network having six composite loads is 

considered with different % unbalanced currents between 10.2 

% and 44.5 %. These loads are compared for reduction of % 

unbalanced currents and improvement of power factor. After 

the compensator connected reduction of unbalance is found 

between 62.6 % and 93.3 % for and the power factor improved 

from 0.83 to 0.99. The average Current THD is considerably 

reduced with the range between 51 % and 87 %. Current THD 

is considerably reduced between 51 % and 87 %. Loads -1 & 

2 have got more current THD as shown in Table 9 closer to 

the limit prescribed by IEEE 519- 2014. A case study also 

needs to be conducted for different ratios of load current due 

to linear and non-linear loading. And different patterns of 

harmonics can be taken for the study using different/multi-

level pulses of converter, loads having dual conversion and, 

arc loads. The designed LC value of the star and delta-

connected network is required to change and switch according 

to the operating loads. Hence an exclusive controller for 

switching the LC network at a faster rate will be effective for 

the changing load pattern in industries. This arrangement is 

useful for the different processes in small-scale industries 

having unique loading cycles with respect to batch products.      
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