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Abstract- Studies have demonstrated that Demand Response (DR) can significantly influence the effectiveness and 

reliability of future intelligent distribution networks. Despite the increasing deployment of wind energy, the issue of curtailment 

continues to pose a challenge for utilities that have a high penetration of wind power. This study aims to propose an effective 

approach for utilizing DR to improve the operating status of distribution networks while simultaneously reducing curtailed wind 

energy. Thus, considering the curtailed wind energy, this paper proposes a wind curtailment reduction DRP (WCR-DRP) to 

modify the demand pattern in response to critical times when wind curtailment may occur due to generator ramp limits or 

minimum output power. In this study, to implement power system operation, an optimal power flow (OPF) problem is utilized 

while considering the availability of demand response (DR) programs, and the power flow and operational constraints related to 

the system are considered . 

Formulating the optimization problem with two objective functions, including minimizing overall costs and reducing wind 

power curtailment, is achieved. The ε-constraint method resolves this optimization problem. Finally, the suggested model is 

employed over the enhanced IEEE 33-bus test system to evaluate its efficacy. Four scenarios are conducted, examining various 

operational parameters to show the practicality of the suggested approach. Outcomes show that suggested model significantly 

enhances the operation of the electrical distribution system while establishing optimal employment of wind power. 

Keywords- Demand Response (DR), price elasticity, optimal power flow (OPF), curtailed wind energy, multi-objective, 
distribution network. 

NOMENCLATURE  

Abbreviations 

DRPs Demand Response Programs 

OPF Optimal Power Flow 

MOO Multi-Objective Optimization 

GAMS General Algebraic Modelling System 

MINLP Mixed-Integer Non-Linear Programming 

WCR Wind Curtailment Reduction 

RES Renewable Energy Sources 

PEM Price Elasticity Model 

VDI Voltage Deviation Index 

TOU Time-of-Use 

RTP Real-Time Pricing 

CPP Critical Peak Pricing 

NEOS Network-Enabled Optimization System 

IBDR Incentive-Based Demand Response 

PBDR Price-Based Demand Response 

 

 Indices and Sets 

𝑡, 𝑇           Index and set of time intervals 

𝑡𝑐𝑟, 𝑇𝑐𝑟     Index and set of critical time at which wind  

                  curtailment may happen  

𝑛, 𝑁           Index and set of periods within the day 

𝑖, 𝑗, 𝐼        Indices and set of network buses 

𝑆                Slack buses set 

𝐺               Network generators sets 

𝑊              Set of buses connected wind energy 

𝑃𝑝             Peak period set 

𝐹𝑝             Flat period set 

𝑉𝑝             Valley period set 

 

 

Parameters, Variables, and Constants 
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E                   Demand price elasticity 

𝐸𝑡𝑡                Self-elasticity 

𝐸𝑡�́�                Cross elasticity 

𝜌𝑡
0, 𝜌𝑡            Electricity charges before and after 

                     implementing DR at time t 

𝑑𝑡
𝑜, 𝑑𝑡          Load before and after implementing DR at 

time t 

𝑅𝑈𝑔 , 𝑅𝐷𝑔     Ramp-up and Ramp-down limits of generator 

g 

𝑊t                Summation of generators output power at 

time t 

𝛼𝑓,𝑡𝑐𝑟 , 𝛼𝑣,𝑡𝑐𝑟             Binary variables related to min 

generator 

                                output at flat and valley periods 

𝛽𝑝,𝑡𝑐𝑟, 𝛽𝑓,𝑡𝑐𝑟, 𝛽𝑣,𝑡𝑐𝑟   Binary variables related to max ramp-

up 

                                limits at peak, flat, and valley periods 

𝛾𝑝,𝑡𝑐𝑟, 𝛾𝑓,𝑡𝑐𝑟, 𝛾𝑣,𝑡𝑐𝑟    Binary variables related to max ramp- 

                                down limits at peak, flat, valley 

periods 

𝑑𝑖𝑓𝑓𝑢𝑝(𝑡)        Summation of ramp-up rates of all 

generators 

                       at time 𝑡 

𝑑𝑖𝑓𝑓𝑑𝑤(𝑡)       Summation of ramp-down rates of all 

                       generators at time 𝑡 

𝑋𝑝𝑡, 𝑋𝑓𝑡, 𝑋𝑣𝑡,             Binary variables used to determine  

𝑋𝑝_𝑢𝑝𝑡𝑐𝑟 , 𝑋𝑝_𝑑𝑤𝑡𝑐𝑟  critical times at peak, flat, and 

valley 

                                    periods. 

𝐶𝑜𝑠𝑡𝑂𝑝          Total system operating cost ($) 

𝐶𝑜𝑠𝑡𝑔𝑒𝑛          Generation cost of generators ($) 

𝐶𝑜𝑠𝑡𝑤𝑐           Cost of system’s wind curtailments ($) 

𝐶𝑜𝑠𝑡𝐷𝑅           Cost of implemented IBDRP ($) 

𝑇𝐿𝑅𝑡
𝐷𝑅            Total load reduction due to IBDR program 

𝑖𝑛𝑐𝑝               Customer incentives for reducing demand at 

                       peak period ($/MWh) 

𝑑𝑖,𝑡
𝑜                  Base load of bus 𝑖 at time 𝑡 before applying 

DR 

𝑑𝑖,𝑡                Load of bus 𝑖 at time 𝑡 after applying DR 

(MW) 

𝜌𝑛
0        Electricity charge before applying DR ($/MWh) 

𝜌𝑝        Electricity charge on the peak period ($/MWh) 

𝜌𝑓        Electricity charge on the flat period ($/MWh) 

𝜌𝑣        Electricity charge on the valley period ($/MWh) 

𝜌𝑝,𝑐𝑟    Electricity charge at critical times of the peak 

period 

𝜌𝑓,𝑐𝑟    Electricity charge at critical times of the flat period 

𝜌𝑣,𝑐𝑟    Electricity charge at critical times of the valley 

period 

𝜌𝑣
𝑙𝑖𝑚     Electricity charge limit at valley period ($/MWh) 

𝐷𝑅𝑙𝑖𝑚  Load reduction limit of DRP (MW) 

𝑣𝑤𝑐     Value of wind curtailment per MWh ($/MWh) 

𝐼𝑖𝑗,𝑡 , 𝑆𝑖𝑗,𝑡      Current and complex power distributed 

between 

                    buses 𝑖 and 𝑗 at time 𝑡 

𝑃𝑖𝑗,𝑡  , 𝑄𝑖𝑗,𝑡    Real and imaginary power distributed 

between  

                    buses 𝑖 and 𝑗 at time 𝑡 

𝑃𝑖𝑗
𝑀𝑎𝑥, 𝑄𝑖𝑗

𝑀𝑎𝑥 , 𝑆𝑖𝑗
𝑀𝑎𝑥   Real, Imaginary, and Apparent 

power 

                                 limits of line between bus 𝑖 and bus 𝑗 

𝑉𝑖,𝑡 , 𝛿𝑖,𝑡         Voltage magnitude and phase angle of 

                      bus 𝑖 at time 𝑡. 

𝑍𝑖𝑗  , 𝜃𝑖𝑗           Impedance magnitude and angle of the 

                      line from bus 𝑖 to bus 𝑗 

𝑝𝑔,𝑡 , 𝑄𝑔,𝑡       Real and imaginary power generation of 

                       generator 𝑔 at time 𝑡 

𝑝𝑔
𝑚𝑖𝑛 , 𝑝𝑔

𝑚𝑎𝑥           Min and max active power generation 

                                 limits of generator 𝑔 

𝑄𝑔
𝑚𝑖𝑛 , 𝑄𝑔

𝑚𝑎𝑥          Min and max reactive power 

generation 

                                 limits of generator 𝑔 

𝑃𝑖,𝑡
𝑤𝑐 , 𝑃𝑖,𝑡

𝑤  , 𝑃𝑖,𝑡
𝑤𝑐𝑎𝑝 

    Wind power capacity, actual wind 

                                 generated, and curtailed power of 

wind 

 

1.  Introduction 

      Implementation of renewable energy sources (RES) in 

power systems is becoming increasingly necessary in response 

to energy crisis and climate change [1]. Studies have found 

that global renewable capacity is predicted to increase by 

almost 2,400 GW between 2022 and 2027, demonstrating 

growing importance of RES in maintaining reliable and secure 

power systems [2]. Among the fastest-growing renewable 

sources, wind power has received significant attention from 

researchers studying its characteristics and requirements for 

integration into power grid [3]. Despite benefits of wind 

energy, a significant proportion of it is wasted due to technical 

security limitations and need for power system stability. Wind 

curtailment, in which power production from wind turbines is 

reduced below maximum amount that a system of properly 

operating wind turbines can produce, has become a major 

challenge in integration of RES [4], it results in a significant 

reduction in economic and energy. In order to maintain system 

reliability, decreasing renewable energy production in any 

region of network is required to maintain equilibrium between 

supply and demand. Incorporation of more adaptable 

resources into system, including demand response and energy 

storage, can help address these issues [5,6]. 

 

 

      Demand Response (DR) is a technique that opens up 

electricity market to consumer participation by decreasing 

peak loads or adjusting energy usage in response to dynamic 

pricing or other incentives [7]. DR can reduce customers' 

electric bill costs and decrease peak demand, eliminating the 

need to run expensive, high-emission-producing units, and 

avoiding or postponing the need for capital-intensive 

reinforcements. It also provides insurance against volatility of 

real-time market prices and helps mitigate risks associated 
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with unpredictable pricing for energy providers. [8]. DR can 

be employed as an ideal addition to erratic RES like wind. The 

need for further examination of various technical and financial 

advantages of DR in these systems is, therefore, necessary 

before its implementation. As systems with higher penetration 

of wind energy require close attention to ensure that DR 

manages difficult features of RES penetration, power grid 

corporations, and research institutions focus on how best to 

integrate these techniques [9-11]. There are two classes of DR: 

price-based (PB) and incentive-based (IB). PBDR programs 

use pricing signals such as RTP, TOU, and CPP to encourage 

customers to manage their electricity usage. In contrast, IBDR 

programs provide customers with monetary rewards or 

penalties for decreasing their electricity usage at peak times 

[12]. DR modeling is inspired by consumer behavior, 

elasticity is a useful method for understanding customer 

behavior. PBDR utilizes Price Elasticity Model (PEM) to 
evaluate how load responds to changes in price, while IBDR 

uses an expanded version of PEM that considers incentives 

and penalties [13]. 

1.1.  Literature Review  

      In this literature, several studies that have investigated the 

use of price elasticity models in PBDR and IBDR programs 

are summarized. These studies have suggested various 

optimization models and evaluated performance of different 

pricing strategies and incentive mechanisms. 

In [14], a DR program that merges PB and IB DR is 

proposed. It provides significant benefits for electricity 

providers that serve load and reduces location-based 

electricity price for customers while considering customer 

comfort. Authors in [15] propose a DR model with penalties 

and incentives and compare it with other DR models.  

A mixed integer programming technique is utilized for 

solving DC optimal power flow problem to evaluate 

reliability. Model is tested on Iranian and IEEE RTS 24-bus 

test systems to prioritize DRPs. In [16], an economic 

framework for demand response program that considers 

demand elasticity with respect to price changes, incentives, 

and penalties is proposed. This model can be utilized to 

overcome difficulties in the operation of the market including, 

system reliability, security, and inadequate spinning reserves. 

In [17], a demand response approach integrated with an 

economic dispatch problem is presented, with wind energy 

and system reliability as key considerations. The IEEE 24-bus 

Reliability Test System is used as a simulation system to check 

model effectiveness. Authors in [18] propose an IBDR model 

using a PEM to analyze incentives' impact on customer 

demand sensitivity. The model differentiates economic and 

technical performance and suggests pricing strategies. The 

model is evaluated on IEEE 33 distribution system and 

assessed from customer and utility perspectives. Authors in 

[19] propose a real-time pricing model for demand response 

that optimizes pricing using elasticity and two types of DR. It 

can manage demand-side resources and facilitate renewable 

energy integration in smart grids. In [20], an optimal TOU 

approach is suggested to reduce power loss,  variations in 

voltage, and difference between peak and valley values of 

distribution systems. An IEEE 14-bus system is utilized to 

evaluate suggested model performance. In [21], economic 

effects of high wind power levels on distribution system are 

analyzed using a PB-DRP. An optimization problem is 

suggested to reduce system's operating costs, and simulation 

results show a decrease in operating cost and an enhancement 

to grid's ability to integrate more wind power. Authors in [22] 

introduce a stochastic model for DR scheduling in systems 

with significant wind power capacity. The model considers PB 

and IB DR programs, and simulation outcomes show reduced 

costs and emissions. It effectively optimizes resource 

scheduling. Authors in [23] propose a multi-timescale 

scheduling model that combines demand response and robust 

optimization to address wind power integration uncertainty. 

Simulations show cost reduction and improved integration. 

The model optimizes resource scheduling in high-wind power 

penetration systems. 

1.2.  Motivation and Contributions 

      The motivation for our proposed model stems from the 

need to improve the economic and technical performance of 

distribution systems integrated with wind energy. While some 

studies have proposed optimization models for wind energy 

integration, there is a lack of a demand response program 

(DRP) that encourages load modification during critical times 

to avoid wind curtailments. Such a DRP can ensure reliable 

and economic distribution system operation. Furthermore, 

both technical and economic aspects need to be considered for 

enhancing renewable energy integration. 

This study proposes a Wind Curtailment Reduction 

Demand Response Program (WCR-DRP) to address wind 

energy curtailment challenges in high wind energy penetration 

utilities. At first, critical times at which wind curtailments may 

occur are determined, and then DR is applied based on 

identified critical times and the period during which they 

occur to avoid wind curtailments. 

WCR-DRP is a modified TOU- PBDR technique that 

considers prices at normal and critical times (at which wind 

curtailments may happen). It classifies load curve into peak, 

valley, and flat durations using half-ladder membership 

function technique and utilizes an OPF problem to implement 

power system operation. A MINLP model is used to formulate 

multi-objective optimization problem with ε-constraint 

method used to solve it, and a fuzzy satisfactory technique is 

utilized to choose best solution. The suggested approach is 

evaluated on enhanced IEEE 33-bus test system under various 

operational scenarios. 

2.  Methodology 

This part contains methodology employed in this study, 

encompassing problem description and formulation of DR 

program. 

2.1.  Problem Description 

       Integrating wind power into electrical network is essential 

for achieving a sustainable energy future, but it poses 
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challenges due to its intermittent and variable nature. One of 

main challenges is wind curtailment. This can lead to a waste 

of clean energy and reduce power grid efficiency and 

reliability. Wind curtailments are correlated with certain 

situations related to minimum power limit and limits for 

power output ramp-up and ramp-down of generators, as 

explained below. 

Consider a particular power system with wind power 

generation of 10 MW and a ramp-down/up limit of 30 MW. 

    Figure.1 illustrates a segment of the daily load 

profile (over a 5-hour period) from times t1 to t5 for this 

system. The y-axis represents the load (in MW) while the x-

axis denotes time (in hours). 

 For instance, at times t3 and t4, the load is 70 MW and 

30 MW respectively. Assuming the wind power to be 10 MW, 

the required generation from conventional sources would 

be 60 MW and 20 MW at t3 and t4 respectively. Here, the 
ramp-down power is 60 - 20 = 40 MW which exceeds the 

ramp-down limit of 30 MW. Therefore, to maintain the 

balance and stay within the ramp-down limit, the generation 

at t4 needs to be increased to 30 MW resulting in wind 

curtailment of 10 MW at t4 . 

Fig. 1. Hourly load curve 

Similarly, between t4 and t5, the required generation from 

conventional sources should be 20 MW and 60 MW 

respectively. The ramp-up power in this case is 60 - 20 = 40 

MW which surpasses the ramp-up limit of 30 MW. 

Consequently, to preserve the balance and comply with the 

ramp-up limit, the generation at t4 must be raised to 30 MW 

leading to wind curtailment of 10 MW at t4. 

Finally, considering only the minimum power output 

limit of generators to be 25 MW, while the wind power is 10 

MW, the required conventional power at t4 would be 20 MW 

which falls below the minimum power limit (25 MW). 

Therefore, the generator power output must be increased to 25 

MW resulting in wind curtailment of 5 MW at time t4. 

This example demonstrates that wind power curtailment 

can occur due to certain situations, as below: 

2.1.1 Ramp-Up Constraints  

If summation of ramp-up rates of generators is greater 

than ramp-up limit as in Eq. (1), 

∑ 𝑝𝑔,𝑡+1 − 𝑝𝑔,𝑡

𝑔

 > ∑ 𝑅𝑈𝑔

𝑔

 , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                   (1) 

 2.1.2 Ramp-Down Constraints 

If summation of  ramp-down rates of generators is greater 

than ramp-down limit as in Eq. (2), 

∑ 𝑝𝑔,𝑡−1 − 𝑝𝑔,𝑡

𝑔

 > ∑ 𝑅𝐷𝑔

𝑔

  , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                  (2) 

 2.1.3. Min Power Constraint of Generators 

If overall power output of all generators is less than 

minimum output power of generators as in Eq. (3), 

 ∑ 𝑝𝑔,𝑡

𝑔

< ∑ 𝑝𝑔
𝑚𝑖𝑛

𝑔

   , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                              (3) 

 where 𝑝𝑔
𝑚𝑖𝑛 is the lower power bound of the unit 𝑔 (MW) 

In these cases, one solution to balance load and ensure 

that output power is within limits for power output ramp-up 

and ramp-down of the generators is to increase output power 

of generator(s) at time t with capability to increase their output 

quickly while curtailing power output of wind generators to 

compensate for the excess power (𝑃𝑡
𝑤𝑐 > 0 ). 

This is because wind generators are often the most 

flexible and responsive generators in system, and can quickly 

adjust their output to compensate for fluctuations in power 

output of other generators. 

To avoid curtailment, DR programs can be used to adjust 

load during critical times, the need to increase generation can 

be reduced, and wind power curtailment can be avoided. 

2.2.  Proposed DR Program 

        This section describes the proposed approach for 

reducing wind curtailment through a DR strategy, known as 

the Wind Curtailment Reduction DRP (WCR-DRP). 

The proposed model suggests that DR can be used to 

address the technical constraints of generators, such as 

minimum load requirements or ramping limits.  

This approach recognizes that high wind power periods 

do not necessarily correspond to periods of low demand and 

that demand response measures must be implemented 

carefully to make sure that they do not compromise reliability 

or stability of power grid. The use of OPF allows for a more 

precise determination of generator output and ramping limits, 

which can help reduce need for curtailment or increase output 

of other generators. The time at which generator output just 

equals ramp-down and ramp-up limits is identified. If this time 

falls within a valley or flat period of load curve, electricity 

prices at these times are adjusted to increase demand during 

these periods to reduce wind power curtailments. However, if 

the time falls within a peak period, there will be two different 
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scenarios. All cases of critical times associated with ramp 

limits will be discussed below. 

The time at which the curtailment may occur is referred 

to as critical time (𝑡𝑐𝑟). There are three cases associated with 

periods at which wind curtailments occur: 

➢ Case 1: If 𝑡𝑐𝑟 occurs at a peak period (𝑃𝑝), there are two 

possible scenarios. The basic idea of reducing wind 

curtailment events is to increase power consumption 

during periods of high wind curtailment to make the best 

use of renewable power. However, increasing 

consumption during peak periods may lead to a new peak 

load, which could affect system security and reliability. 

Accordingly, a suggested technique is presented: 

a) If 𝑡𝑐𝑟 ∈ 𝑃𝑝 is due to ramp-down constraints  

       If (𝑡𝑐𝑟 ∈ 𝑃𝑝), electricity prices are modified at time 

(𝑡𝑐𝑟 − 1) to motivate customers to move their load to 

different hours. 

b)  If 𝑡𝑐𝑟 ∈ 𝑃𝑝 is due to ramp-up constraints  

 If ( 𝑡𝑐𝑟 ∈ 𝑃𝑝), electricity prices are modified at time 

(𝑡𝑐𝑟 + 1) to motivate customers to move their load to 

different hours. 

➢ Case 2: If 𝑡𝑐𝑟 occurs during at the flat period 𝐹𝑝 , 

electricity prices at this time are modified to motivate 

customers to increase their load consumption by shifting 

their load to this time. 

 

➢ Case 3: If 𝑡𝑐𝑟 occurs at valley period 𝑉𝑝, electricity prices 

at this time are modified to motivate customers to increase 

their load consumption by shifting their load to this time. 

To build formulation of the proposed model, let’s 

introduce the following variables and binary variables to 

represent critical times of minimum output and ramping 

constraints for generators. 

2.2.1. Critical Time of Minimum Power of Generators 

𝑊t: This variable represents the summation of generator’s 

output power at time 𝑡, as in Eq. (4). 

𝑊t = ∑ 𝑝𝑔,𝑡

𝑔

          , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                                     (4) 

It is more common for total generator output power to be 

close to, if not at, its maximum power output during peak 

periods to meet the high electricity demand. 

Thus, we introduce two binary variables that indicate 

whether minimum power output of generators occurs during 

flat or valley periods. These binary variables can be defined as 

follows: 

𝛼𝑓,𝑡𝑐𝑟 , and 𝛼𝑣,𝑡𝑐𝑟 , these binary variables take on value 1 if 

summation of generators output power at time 𝑡 equal to 

minimum generators output power for all generators at flat and 

valley times, respectively, as in Eq. (5) and Eq. (6). 

𝛼𝑓,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑊t = ∑ 𝑝𝑔
𝑚𝑖𝑛

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

, ∀𝑡, 𝑡𝑐𝑟 ∈ 𝐹𝑝      (5) 

 

𝛼𝑣,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑊t = ∑ 𝑝𝑔
𝑚𝑖𝑛

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

, ∀𝑡, 𝑡𝑐𝑟 ∈ 𝑉𝑝      (6) 

2.2.2. Critical Time of Ramp-Up Constraints 

𝑑𝑖𝑓𝑓_𝑢𝑝(𝑡): This variable represents difference in 

generator output power between two consecutive time 

intervals as given in Eq. (7), where 𝑡 denotes current time 

interval. Specifically, it calculates sum of output power 

differences for all generators between time 𝑡 and time 𝑡 + 1. 

𝛽𝑝,𝑡𝑐𝑟, 𝛽𝑓,𝑡𝑐𝑟 and 𝛽𝑣,𝑡𝑐𝑟: These binary variables take on 

value 1 if the difference in generator output power between 

time 𝑡 and time 𝑡 + 1 is equal to the sum of ramp-up limits 

(RU) for all generators at peak, flat, and valley times, 

respectively as introduced in Eq. 8 to Eq.10. 

𝑑𝑖𝑓𝑓𝑢𝑝(𝑡) = ∑ 𝑝𝑔,𝑡+1 − 𝑝𝑔,𝑡

𝑔

         , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇            (7) 

𝛽𝑝,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑢𝑝(𝑡) = ∑ 𝑅𝑈𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

                                                     , ∀𝑡, 𝑡𝑐𝑟 ∈ 𝑃𝑝           (8) 

𝛽𝑓,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑢𝑝(𝑡) = ∑ 𝑅𝑈𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }  

    

                                                      , ∀𝑡, 𝑡𝑐𝑟 ∈ 𝐹𝑝          (9) 

𝛽𝑣,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑢𝑝(𝑡) = ∑ 𝑅𝑈𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }   

                                                          , ∀𝑡, 𝑡𝑐𝑟 ∈ 𝑉𝑝    (10) 

2.2.3. Critical Time of Ramp-Down Constraints 

𝑑𝑖𝑓𝑓_𝑑𝑤(𝑡): This variable represents difference in 

generator output power between two consecutive time 

periods, as in Eq. (11), where t denotes the current time period. 

Specifically, it calculates sum of the output power differences 

for all generators between time 𝑡 − 1 and time 𝑡. 

𝛾𝑝,𝑡𝑐𝑟, 𝛾𝑓,𝑡𝑐𝑟, and 𝛾𝑣,𝑡𝑐𝑟: These binary variables take on 

value 1 if the difference in generator output power between 

time 𝑡 − 1 and time t is equal to summation of ramp-down 

limits (RD) for all generators at peak, flat, and valley times, 

respectively, as given in Eq. (12) to Eq. (14). 
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Therefore, we can formulate relationships between these 

variables and binary variables as follows : 

𝑑𝑖𝑓𝑓𝑑𝑤(𝑡) = ∑ 𝑝𝑔,𝑡−1 − 𝑝𝑔,𝑡

𝑔

       , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇           (11) 

𝛾𝑝,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑑𝑤(𝑡) = ∑ 𝑅𝐷𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

                                                   , ∀𝑡, 𝑡𝑐𝑟 ∈ 𝑃𝑝           (12) 

𝛾𝑓,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑑𝑤(𝑡) = ∑ 𝑅𝐷𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

                                                     ,∀𝑡, 𝑡𝑐𝑟 ∈ 𝐹𝑝        (13) 

𝛾𝑣,𝑡𝑐𝑟 =  { 1   𝑖𝑓 𝑑𝑖𝑓𝑓𝑑𝑤(𝑡) = ∑ 𝑅𝐷𝑔

𝑔

, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 } 

                                                         , ∀𝑡, 𝑡𝑐𝑟 ∈ 𝑉𝑝     (14) 

Finally, before formulating the proposed DRP equation, 

some binary variables are set to handle the time at which 

WCR-DRP will occur which is given in Eq. (15) to Eq. (19) 

𝑋𝑓𝑡 =  {
 1   𝑖𝑓, 𝛼𝑓,𝑡𝑐𝑟  𝑜𝑟 𝛽𝑓,𝑡𝑐𝑟𝑜𝑟 𝛾𝑓,𝑡𝑐𝑟 = 1  

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}                   (15) 

𝑋𝑣𝑡 =  {
 1   𝑖𝑓, 𝛼𝑣,𝑡𝑐𝑟𝑜𝑟  𝛽𝑣,𝑡𝑐𝑟𝑜𝑟 𝛾𝑣,𝑡𝑐𝑟 = 1  

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}                   (16) 

𝑋𝑝_𝑢𝑝𝑡𝑐𝑟 =  {
 1   𝑖𝑓 𝛽𝑝,𝑡𝑐𝑟 = 1  

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}                                          (17) 

𝑋𝑝_𝑑𝑤𝑡𝑐𝑟 =  {
 1   𝑖𝑓 𝛾𝑝,𝑡𝑐𝑟 = 1  

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}                                          (18) 

𝑋𝑝𝑡 = 𝑋𝑝_𝑢𝑝𝑡𝑐𝑟−1 + 𝑋𝑝_𝑑𝑤𝑡𝑐𝑟+1                                         (19) 

These constraints ensure that 𝑋𝑓𝑡 is set to 1 during flat 

period when the restrictions on ramp-up and ramp-down rates, 

and minimum generated power are at their thresholds, and 𝑋𝑣𝑡 

is set to 1 during valley times when the restrictions on ramp-

up and ramp-down rates, and minimum generated power are 

at their thresholds, 𝑋𝑝_𝑢𝑝𝑡𝑐 is set to 1 only if the ramping-up 

constraint is met at peak times and 𝑋𝑝_𝑑𝑤𝑡𝑐 is set to 1 only if 

the ramping-down constraint is met at peak times. Thus, these 

binary variables are used to identify critical times during 

which demand change is needed to avoid wind curtailment.   

In this study, load response model based on PEM is 

applied  which  is very common and effective in load modeling 

and is applied in various DRPs, in which overall load response 

model for PB/IB DRPs is in Eq. (20). 

𝑑𝑡 = 𝑑𝑡
𝑜 . {1 + ∑ 𝐸𝑡�́�.

[𝜌𝑡 − 𝜌𝑡
0 + 𝑖𝑛𝑐𝑡]

𝜌𝑡
0

24

�́�=1

}                            (20) 

 In case where a day is consists of three periods: peak 

period (𝑃𝑝), flat period (𝐹𝑝), and valley period (𝑉𝑝), elasticity 

coefficient matrix becomes: 

𝐸 = [

𝐸𝑝𝑝 𝐸𝑝𝑓 𝐸𝑝𝑣
𝐸𝑓𝑝 𝐸𝑓𝑓 𝐸𝑓𝑣
𝐸𝑣𝑝 𝐸𝑣𝑓 𝐸𝑣𝑣

] 

The proposed DRP equation involves introducing new 

electricity prices , 𝜌𝑛,𝑐𝑟, during these critical times at each day 

period, in which 𝜌𝑝,𝑡𝑐𝑟, 𝜌𝑓,𝑡𝑐𝑟 , and 𝜌𝑣,𝑡𝑐𝑟 are electricity prices 

during critical time at peak, flat, and valley intervals, which 

can make customers change their demand during critical times 

when probability of wind curtailment is high. Thus, electricity 

price at each period could have two different values that 

depend on value of 𝑋𝑝𝑡  , 𝑋𝑓𝑡 , and 𝑋𝑣𝑡, as presented in Eq. 

(21) to (24):  

𝜌𝑛,𝑡 = 𝜌𝑛 ∗ (1 − 𝑋𝑛𝑡) + 𝜌𝑛,t𝑐𝑟 ∗ 𝑋𝑛𝑡    , ∀𝑛 ∈ 𝑁                (21) 

𝑑𝑖,𝑝,𝑡 = 𝑑𝑖,𝑛,𝑡
𝑜 . {1 + 𝐸𝑝𝑝.

[𝜌𝑝,𝑡−𝜌𝑝
0]

𝜌𝑝
0

+ 𝐸𝑝𝑓.
[𝜌𝑓,𝑡−𝜌𝑓

0]

𝜌𝑓
0

+ 𝐸𝑝𝑣.
[𝜌𝑣,𝑡−𝜌𝑣

0]

𝜌𝑣
0 } 

                                   , ∀𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇           (22) 

𝑑𝑖,𝑓,𝑡 = 𝑑𝑖,𝑓,𝑡
𝑜 . {1 + 𝐸𝑓𝑝.

[𝜌𝑝,𝑡−𝜌𝑝
0]

𝜌𝑝
0

+ 𝐸𝑓𝑓.
[𝜌𝑓,𝑡−𝜌𝑓

0]

𝜌𝑓
0

+ 𝐸𝑓𝑣.
[𝜌𝑣,𝑡−𝜌𝑣

0]

𝜌𝑣
0 }  

                                   , ∀𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇           (23) 

𝑑𝑖,𝑣,𝑡 = 𝑑𝑖,𝑣,𝑡
𝑜 . {1 + 𝐸𝑣𝑝.

[𝜌𝑝,𝑡−𝜌𝑝
0]

𝜌𝑝
0

+ 𝐸𝑣𝑓.
[𝜌𝑓,𝑡−𝜌𝑓

0]

𝜌𝑓
0

+ 𝐸𝑣𝑣.
[𝜌𝑣,𝑡−𝜌𝑣

0]

𝜌𝑣
0

} 

                                   , ∀𝑖 ∈ 𝐼, 𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇           (24) 

The approach outlined above seeks to reduce wind 

curtailment events depending on load response to electricity 

price changes during periods of high wind curtailment 

probability. This model can reduce curtailments and make 

better use of renewable power.  

2.3.  Optimization Problem 

Model is formulated as a multi-objective optimal power 

flow problem in which objectives are minimization total 

system operating cost and wind curtailed power. Different 

scenarios are studied to check suggested model effect. 

2.3.1.  Objective Function 

Minimization overall operating cost of the system and 

wind-curtailed power are the objective functions, as in  Eq. 

(25) and Eq.(26) 

min 𝑂𝐹                                                                                        (25) 

𝑂𝐹 = {𝑂𝐹1 = 𝐶𝑜𝑠𝑡𝑂𝑝 , 𝑂𝐹2 = 𝑃𝑤𝑐}                                       (26) 

Total operating cost is divided into three parts, as in Eq. 

(27). 
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𝐶𝑜𝑠𝑡𝑂𝑝 =  (𝐶𝑜𝑠𝑡𝑔𝑒𝑛 + 𝐶𝑜𝑠𝑡𝑤𝑐 + 𝐶𝑜𝑠𝑡𝐷𝑅)                          (27) 

First part describes cost of generating electricity from 

thermal units (the cost of fuel), as in Eq. (28). 

𝐶𝑜𝑠𝑡𝑔𝑒𝑛 = ∑ 𝑎𝑔(𝑝𝑔,𝑡)2 + 𝑏𝑔𝑝𝑔,𝑡 + 𝑐𝑔

𝑔,𝑡

 ($)     

                        ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                                          (28)  

 Second part stands for wind curtailments costs of wind 

turbines, as in Eq. (29).  

𝐶𝑜𝑠𝑡𝑤𝑐 = ∑ 𝑃𝑖,𝑡
𝑤𝑐

𝑖,𝑡

. 𝑣𝑤𝑐  ($)   ∀𝑖 ∈ 𝑊, ∀𝑡 ∈ 𝑇                   (29) 

Last part is the total DR cost if an IBDR scenario is 

considered , which is overall reduction in load during peak 

time (MWh) multiplied by incentive rate ($/MWh) ,as in Eq. 

(30). 

𝐶𝑜𝑠𝑡𝑖𝑛𝑐 = ∑ 𝑇𝐿𝑅𝑡
𝐷𝑅

𝑡

. 𝑖𝑛𝑐𝑡      ($)    , ∀𝑡 ∈ 𝑇                        (30) 

Total load reduction in peak periods due to normal 

incentives is calculated, as in Eq. (31). 

𝑇𝐿𝑅𝑡
𝐷𝑅 = ∑ {−𝑑𝑖,𝑡

𝑜 . 𝐸𝑝𝑝.
𝑖𝑛𝑐𝑝

𝜌𝑡
0    }  

𝑖

  ∀𝑡 ∈ 𝑃𝑝, ∀𝑖 ∈ 𝐼      (31) 

Finally, total wind-curtailed power is the total wind 

power curtailed at each bus for the entire duration, as given in 

Eq. (32).  

𝑃𝑤𝑐 = ∑ 𝑃𝑖,𝑡
𝑤𝑐

𝑖,𝑡

   ∀𝑖 ∈ 𝑊, ∀𝑡 ∈ 𝑇                                           (32) 

 2.3.2.  Constraints 

        In this part, limitations and constraints that were taken 

into account in the optimization problem are discussed, as 

below: 

2.3.2.1.  Power Flow Constraints  

Active, reactive, and apparent power flow limits are 

considered, as in Eq. (33) to Eq. (36). 

−𝑃𝑖𝑗
𝑀𝑎𝑥 ≤ 𝑃𝑖𝑗,𝑡 ≤ 𝑃𝑖𝑗

𝑀𝑎𝑥            , ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑡 ∈ 𝑇                  (33) 

−𝑄𝑖𝑗
𝑀𝑎𝑥 ≤ 𝑄𝑖𝑗,𝑡 ≤ 𝑄𝑖𝑗

𝑀𝑎𝑥           , ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑡 ∈ 𝑇                  (34) 

−𝑆𝑖𝑗
𝑀𝑎𝑥 ≤ 𝑆𝑖𝑗,𝑡 ≤ 𝑆𝑖𝑗

𝑀𝑎𝑥            , ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑡 ∈ 𝑇                  (35) 

Where 𝑆𝑖𝑗,𝑡 = √(𝑃𝑖𝑗,𝑡
2 + 𝑄𝑖𝑗,𝑡

2)                                        (36)   

2.3.2.2. Constraints on Ramping Up and Ramping Down  

       The maximum ramping up or ramping down limits define 

maximum rate at which generators can increase or decrease 

power, as in Eq. (37) and Eq. (38). 

𝑝𝑔,𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑈𝑔       , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                            (37) 

𝑝𝑔,𝑡−1 − 𝑝𝑔,𝑡 ≤ 𝑅𝐷𝑔       , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                            (38)  

2.3.2.3. Min/Max Power Constraints 

Active and reactive generated power from thermal units 

must be within certain limits, as in Eq. (39) and Eq. (40). 

𝑝𝑔
𝑚𝑖𝑛 ≤ 𝑝𝑔,𝑡 ≤ 𝑝𝑔

𝑚𝑎𝑥     , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                           (39) 

𝑄𝑔
𝑚𝑖𝑛 ≤ 𝑄𝑔,𝑡 ≤ 𝑄𝑔

𝑚𝑎𝑥    , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇                          (40) 

 

2.3.2.4. Wind Energy Constraints  

Wind power curtailment is the excess of available power 

from wind over actual power generated from wind turbines, as 

given in Eq. (41) to Eq. (43). 

𝑃𝑖,𝑡
𝑤𝑐 = 𝑃𝑖,𝑡

𝑤𝑐𝑎𝑝 
− 𝑃𝑖,𝑡

𝑤       , ∀𝑖 ∈ 𝑊, ∀𝑡 ∈ 𝑇                             (41) 

0 ≤ 𝑃𝑖,𝑡
𝑤 ≤ 𝑃𝑖,𝑡

𝑤𝑐𝑎𝑝            , ∀𝑖 ∈ 𝑊, ∀𝑡 ∈ 𝑇                             (42) 

0 ≤ 𝑃𝑖,𝑡
𝑤𝑐 ≤ 𝑃𝑖,𝑡

𝑤𝑐𝑎𝑝 
         , ∀𝑖 ∈ 𝑊, ∀𝑡 ∈ 𝑇                             (43) 

2.3.2.5. Voltage Constraints 

Magnitude and angle of voltage at every bus at different 

times are limited by allowed voltage levels, as in Eq. (44) and 

Eq. (45), and voltage of the slack bus is maintained constant 

at 1∠0 𝑝. 𝑢 at different periods as in Eq. (46) 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖,𝑡 ≤ 𝑉𝑚𝑎𝑥        , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                 (44) 

𝛿𝑚𝑖𝑛 ≤ 𝛿𝑖,𝑡 ≤ 𝛿𝑚𝑎𝑥         , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                               (45) 

where 𝑉𝑚𝑖𝑛, 𝛿𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 , 𝛿𝑚𝑎𝑥 indicate minimum and 

maximum voltage thresholds that distribution system can 

sustain, respectively.  

𝑉𝑖,𝑡 = 1∠0 𝑝. 𝑢     , ∀𝑖 ∈ 𝑆                                                (46)   

2.3.2.6. Balance Constraints  

Power balance at diverse system buses and time points are 

indicated as in Eq. (47) and Eq. (48). 

𝑃𝑖,𝑡
𝑔

+ 𝑃𝑖,𝑡
𝑤 − 𝑑𝑖,𝑡 = ∑ 𝑃𝑖𝑗,𝑡

𝑗

  ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, 𝑖, 𝑗 ∈ 𝐼         (47) 

𝑄𝑖,𝑡
𝑔

− 𝑄𝑖,𝑡
𝐷 = ∑ 𝑄𝑖𝑗,𝑡

𝑗

     , ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, 𝑖, 𝑗 ∈ 𝐼              (48) 

Active and reactive power distribution on line is 

determined as in Eq. (49) and (50). 

𝑃𝑖𝑗,𝑡 =
𝑉𝑖,𝑡

2

𝑍𝑖𝑗
cos(𝜃𝑖𝑗) −

𝑉𝑖,𝑡 ∗ 𝑉𝑗,𝑡

𝑍𝑖𝑗
cos(𝜃𝑖𝑗 + ∠𝛿𝑖,𝑡 − ∠𝛿𝑗,𝑡) 

                                    𝑖, 𝑗 ∈ 𝐼, ∀𝑡 ∈ 𝑇                                        (49) 
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𝑄𝑖𝑗,𝑡 =
𝑉𝑖,𝑡

2

𝑍𝑖𝑗
sin(𝜃𝑖𝑗) −

𝑉𝑖,𝑡 ∗ 𝑉𝑗, 𝑡

𝑍𝑖𝑗
sin(𝜃𝑖𝑗 + ∠𝛿𝑖,𝑡 − ∠𝛿𝑗,𝑡)

−
𝑏 ∗ 𝑉𝑖,𝑡

2

2
   ∀𝑖, 𝑗 ∈ 𝐼, ∀𝑡 ∈ 𝑇                  (50) 

2.3.2.7. DR Constraints 

      The first two constraints in Eq. (51) and Eq. (52) are 

related to incentive-based DR, where total load reduction 

(TLR) due to DR program should not exceed a predefined 

limit, and rate should be non-negative and less than or equal 

to another predefined limit. 

The following constraints are related to price-based DR: 

Implementation of a TOU pricing scheme is intended to 

achieve load shifting in electricity grid. To ensure that this 

goal is met. Cost of electricity at peak times must be higher 

than cost at flat times, and cost at flat times must be higher 

than cost at valley times, this can be expressed mathematically 

as Eq. (53) and Eq. (54). To prevent that substantial price 

differences between peak and valley times cause a reversal of 

load between these periods, a constraint on peak-valley price 

ratio is included , which is expressed as Eq. (55). Additionally, 

the cost limit represents the minimum price that must be 

charged for electricity during valley period, as in Eq. (56). 

Finally, there is no load curtailment at PBDR, which means 

that load consumption before and after applying DR is not 

changed, as in Eq. (57). 

∑ 𝑇𝐿𝑅𝑡
𝐷𝑅

𝑡

≤ 𝐷𝑅𝑙𝑖𝑚       , ∀𝑡 ∈ 𝑃𝑝                                         (51) 

0 ≤ 𝑖𝑛𝑐𝑝 ≤ 𝑖𝑛𝑐𝑝
𝑙𝑖𝑚                                                                  (52) 

𝜌𝑝 − 𝜌𝑓 ≥ 0                                                                                (53) 

𝜌𝑓 − 𝜌𝑣 ≥ 0                                                                                (54) 

2 ≤
𝜌𝑝

𝜌𝑣

≤ 5                                                                                 (55) 

𝜌𝑣 − 𝜌𝑣
𝑙𝑖𝑚 ≥ 0                                                                            (56) 

 ∑ 𝑑𝑖,𝑡
𝐵𝑒𝑓𝑜𝑟𝑒

𝑖,𝑡

≤ ∑ 𝑑𝑖,𝑡
𝐴𝑓𝑡𝑒𝑟

𝑖,𝑡

       , ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇              (57) 

2.4.  Technical Performance Indices  

To assess variation degree in load curve over time, load 

factor has been defined by Eq. (58). 

𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟% = 100 ∗
∑ 𝑑𝑡

T
𝑡=1

𝑇 ∗ 𝑑𝑡
𝑚𝑎𝑥               , ∀𝑡 ∈ 𝑇          (58) 

Other significant factors calculate various percentages 

between peak and valley. These factors are established using 

Eq. (59) and Eq. (60). 

 

𝑝𝑒𝑎𝑘 𝑡𝑜 𝑣𝑎𝑙𝑙𝑒𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 100 ∗
𝑑𝑡

𝑚𝑎𝑥 − 𝑑𝑡
𝑚𝑖𝑛

𝑑𝑡
𝑚𝑎𝑥   

                                                                     , ∀𝑡 ∈ 𝑇  (59) 

   

𝑝𝑒𝑎𝑘 − 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒% = 100 ∗
𝑑𝑜,𝑡

𝑚𝑎𝑥 − 𝑑𝑡
𝑚𝑎𝑥

𝑑𝑜,𝑡
𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇 (60) 

As loads are reduced or shifted to make total load profile 

as flat as possible, load shape is an important factor that is 

calculated as in Eq. (61) . 

𝑙𝑜𝑎𝑑 _𝑠ℎ𝑎𝑝𝑒 = ∑(𝑑𝑡 − 𝑑𝑡
𝑚𝑒𝑎𝑛)2

𝑡

        , ∀𝑡 ∈ 𝑇                (61) 

                               

To show DR impact on voltage, VDI is used as in Eq. 

(62). Where voltage at bus (𝑖) during time slot 𝑡 is represented 

by 𝑉𝑖,𝑡 , and nominal voltage value at bus (𝑖) is indicated by , 

𝑉𝑖
0. 

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =
∑ ∑ (𝑉𝑖

0 − 𝑉𝑖,𝑡)233
𝑖=1

24
𝑡=1

𝑇
    

                             , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                 (62) 

2.5.  Solution Procedures  

2.5.1. Determine Net Load Curve  

The net load profile can be estimated by subtracting wind 

energy output from actual load demand at each time interval. 

This calculation considers wind energy effect on distribution 

network and provides a more accurate representation of 

system's energy demand and supply. The resulting net load 

profile can then be used to optimize demand response 

programs and improve efficiency of distribution system [24]. 

2.5.2.   Peak-Valley Time Division 

Peak-valley time division refers to process of dividing 24 

hours into distinct time intervals that correspond to peak, 

valley, and flat load periods. Various methods can be used for 

peak-valley time division, half ladder membership function 

[25] is utilized here. This method is utilized to classify load 

curves into distinct periods based on net load curve. 

Difference between total load demand and wind output yields 

net load curve .Using half-ladder membership function 

method, the net load curve is subdivided into three different 

intervals: peak, valley, and flat periods, derived from the 

threshold values of maximum and minimum demand. This 

method provides a simple and effective way to classify load 

curves into distinct periods, which is essential for 

implementation of the proposed WCR-DRP.  

2.5.3.   Apply the Load Economic Model  

 After obtaining time periods, economic model of each 

scenario, which includes PBDRP, IBDRP and the proposed 

DRP, is applied to load curve.  

2.5.4.  Solving the MOO Problem 
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 There exist several techniques that can be utilized to 

solve optimization problems involving multiple objective 

functions, methods such as evolutionary algorithms,  weighted 

sum method, and Pareto optimality are utilized. This paper 

utilizes Pareto optimality method for solving the proposed 

optimization problem. Specifically, Pareto optimal front is 

determined using ε-constraint method [26], which involves 

minimizing one objective function by converting remaining 

objectives into constraints and imposing an upper limit on 

them. Pareto front is obtained by gradually decreasing this 

limit until optimal set of solutions is obtained. 

2.5.5.  Choosing the Best Solution  

A fuzzy satisfying approach is utilized to find the best 

solution from obtained solutions [27]. This technique 

evaluates extent to which each solution satisfies multiple 

objectives and selects the solution that achieves the highest 

degree of objective satisfaction. An explanation of Pareto 
optimality is provided in [28,29]  and the fuzzy satisfying 

approaches are explained in [30,31]. 

3.  Simulation Results 

3.1.  Test System Description 

     To evaluate suggested approach validity, it was tested 

using enhanced IEEE 33-bus distribution system [32] with 

wind generation integrated at buses 18, 22, 25, and 33, as 

illustrated in Fig.2, with some modifications on wind 

generation units: it is established that wind power cost is 

negligible and therefore not taken into consideration in this 

analysis, while wind power output is not taken as a fixed 

output but as a variable with time, and the assumed hourly 

wind output power is presented in Table 1. 

By considering mesh configuration, the system was 

modeled with more accuracy, allowing for interactions among 

various elements of the system to be captured, and thermal 

unit cost equation is 0.003𝑃2 + 12𝑃 + 240 ($/ℎ) where 𝑃 

represents unit output power.  

 

Fig. 2. Enhanced IEEE 33 Bus Distribution Test System 

 

In implementing the proposed approach, the initial flat 

rate electricity price was set at 150 ($/MWh), with electricity 

price limits in valley period at 20% of flat value, respectively. 

The price of wind curtailment was set at 50 ($/MWh), and the 

maximum incentive limit was set at 10 times the flat price. The 

allowed load for DRP was set at 10% of total load each time. 

Table 2 provides elasticity coefficient matrix.  

 

 

 

 

 

Table 1. Day-ahead hourly wind data 

Time 

(hour) 

Available wind 

power (MW) 

Percentage of 

available wind 

1 0.547609 0.684511335 

2 0.515298 0.64412269 

3 0.490455 0.613069156 

4 0.479787 0.599733283 

5 0.471099 0.588874071 

6 0.478415 0.59801867 

7 0.501429 0.626786054 

8 0.521395 0.651743189 

9 0.564831 0.706039246 

10 0.629606 0.787007049 

11 0.671214 0.839016956 

12 0.682187 0.852733854 

13 0.696514 0.870642027 

14 0.667403 0.834254144 

15 0.653229 0.816536483 

16 0.655515 0.81939417 

17 0.699257 0.874071252 

18 0.8 1 

19 0.786893 0.983615927 

20 0.749095 0.936368832 

21 0.710078 0.887597638 

22 0.647438 0.809297009 

23 0.596685 0.745856354 

24 0.586778 0.733473 

 

Table 2. Elasticity coefficient matrix [33] 

 Peak Flat Valley 

Peak -0.1 0.016 0.012 

Flat 0.016 -0.1 0.01 

Valley 0.012 0.01 -0.1 

 

Table 3. Result of peak-valley division 

Period Corresponding time 

Peak 14,15,16,20,21,22,23,24 
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Flat 1,9,10,11,12,13,17,18,19 

Valley 2,3,4,5,6,7,8 

 

     In accordance with net load data, which is given in Fig. 3, 

load curve is subdivided into three intervals: valley, flat, and 

peak, and they were arranged as in Table 3. The established 

model is a MINLP model implemented in GAMS 

environment [34] and solved using NEOS Server [35] with 

DICOPT solver [36]. 

 

 

Fig. 3. Hourly load, wind power, and net load 

      

3.2.  Optimization Results   

     The outcomes numerical analyses from both economic and 

technical perspectives are discussed in this section. To 

evaluate the proposed approach, several scenarios were 

considered, as described in Table 4. These scenarios were 
applied to test system for analysis. The optimization problem 

was solved, and the optimal solutions based on Pareto 

optimality were obtained using ε-constraint method. The best 

solution for each scenario was then chosen using the fuzzy-

satisfying approach. Several indices were determined to 

evaluate results and provide a comprehensive evaluation of 

the suggested model, considering needs and perspectives of 

various stakeholders in distribution system.  

Table 4. Description of different scenarios 

Scenario1 

Base case with no DR program applied. All 

customers are assumed to be enrolled in flat 

charge payment plan. 

Scenario2 TOU- PBDR is applied 

Scenario3 Direct Load Control (DLC) IBDR is applied. 

Scenario4 The proposed DRP is applied 

 

3.2.1.  Scenario 1  

The initial case is scenario 1, where no demand response 

program (DRP) is implemented, and the customer is charged 

at a fixed rate of 150 ($/MWh) for electricity consumption. 

Using multi-objective function and constraints outlined in Eq. 

(25) to Eq. (50), optimization results indicate that the 

minimum operating cost is achieved at wind curtailment 

minimum value. In this scenario, operating cost amounts to 

6534.9 ($) and associated wind-curtailed power is 685 (kW), 

and other technical and economic outcomes are outlined in 

Table 12. and Table 13. respectively. Absence of DR, limits 

ability to adjust electricity consumption pattern to better 

match the available wind power generation, leading to 

increased wind curtailment and higher operating costs. 

3.2.2.  Scenario 2  

In this scenario, an IBDR is applied, in which incentive 

payments are given to customers to adjust their usage to lower 

consumption during peak demand periods. Optimization 
analysis utilized multi-objective function and constraints 

outlined in Eq. (25) to Eq. (52). Electricity price was set at 150 

($/MWh), and the maximum incentive limit was set to be 10 

times the flat price. Additionally, the allowed load for DRP 

was set at 10% of total load each time. Using these parameters, 

Pareto front and the optimal solution  are presented in Fig. 4 

and Table 5. 

 Solution #7 is chosen as the best one, with a total 

operating cost of 6596.4 ($) and 379.4 (kW) curtailed power. 

The associated incentive value at peak period is 72.43 

($/MWh). As illustrated in Fig.5, a load reduction occurred 

during peak periods, and other technical and economic 

outcomes are shown in Table 12. and Table 13. respectively. 

 

 

 

Fig. 4. Pareto front of Scenario 2 
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Fig. 5. Load curves of scenarios 1 and  2 

Table 5. Pareto optimal solutions for scenario 2 

Solution 

number 
𝑂𝐹1 𝑂𝐹2 𝜇1 𝜇2 𝜇𝑛 

1 6766.1 280.0 0.000 1.000 0.000 

2 6689.3 296.6 0.327 0.950 0.327 

3 6667.7 313.1 0.418 0.900 0.418 

4 6647.6 329.7 0.504 0.850 0.504 

5 6629.0 346.3 0.583 0.800 0.583 

6 6612.0 362.9 0.656 0.750 0.656 

7 6596.4 379.4 0.722 0.700 0.700 

8 6582.4 396.0 0.781 0.650 0.650 

9 6569.9 412.6 0.834 0.600 0.600 

10 6559.0 429.2 0.881 0.550 0.550 

11 6552.1 445.7 0.910 0.500 0.500 

12 6548.1 462.3 0.927 0.450 0.450 

13 6544.6 478.9 0.942 0.400 0.400 

14 6541.4 495.5 0.956 0.350 0.350 

15 6538.7 512.1 0.967 0.300 0.300 

16 6536.4 528.6 0.977 0.250 0.250 

17 6534.5 545.2 0.985 0.200 0.200 

18 6533.0 561.8 0.992 0.150 0.150 

19 6531.9 578.4 0.996 0.100 0.100 

20 6531.2 594.9 0.999 0.050 0.050 

21 6531.0 611.5 1.000 0.000 0.000 

3.2.3.   Scenario 3 

In this case, a PBDR program based on TOU pricing is 

applied. Optimization analysis was conducted using multi-

objective function and constraints outlined in Eq. (25) to Eq. 

(50) and Eq. (53) to Eq. (57). Additionally, electricity price 

limit for valley periods was set to be 20% of the flat value, 

respectively. In this scenario, the minimum value of operating 

cost occurs at the minimum value of wind curtailed power, 

with a total operating cost of 6498.62 ($) and 107.5815 (kW) 

of curtailed power. The associated electricity prices at peak, 

flat, and valley periods were 232.602, 127.375, and 46.5204 

($/MWh) respectively. As illustrated in Fig. 6, a load shifting 

has occurred, customers shifted their load from peak to valley 

and flat periods, and other technical and economic outcomes 

are outlined in Table 12. and Table 13. respectively. 

 

Fig. 6. Load curves of scenarios 1 and 3 

3.2.4.   Scenario 4 

In this case, the proposed DRP, Wind Curtailment 

Reduction DRP (WCR-DRP). The generator considered in 

this study has a ramp-up limit of 0.2 MW, a ramp-down limit 

of 0.2 MW, and a minimum output power of 0 MW. After 

applying optimal power flow, the determined critical times are 

7, 8, 18, 19 as critical up time, and 24 as critical down time. 

Then, optimization analysis was conducted using multi-

objective function and constraints outlined in Eq. (1) to Eq. 

(50) and Eq. (53) to Eq. (57).   

The best solution is found for both operating cost and total 

wind curtailed power , with a total operating cost of 6491.89 

($) zero (kW) curtailed power. The associated electricity 

prices at peak, flat, and valley periods are 234.213, 128.99, 

and 46.8426 ($/MWh) respectively, the associated electricity 

prices during critical times at peak, flat, and valley periods are 

304.094, 78.4006, and 60.8188 ($/MWh) respectively. As can 

be seen in Fig. 7 and Fig. 8, a load shift has occurred as in 

scenario 3, but more consumption has been shifted from hour 

23 at peak period to hours 18, 19 at flat period due to different 

prices at these times, which results a zero-wind curtailed 

power. Finally, other technical and economical outcomes are 

outlined in Table 12. and Table 13. respectively. Furthermore, 

binary variables and electricity prices associated with the best 

solution of the suggested DR program are given in Tables 6, 

7, and Table 8. respectively.  

 

Fig. 7. Load curves of scenarios 1 and 4 
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Fig. 8. Load curves of scenarios 3 and 4 

Table 6. Binary variables of suggested model 

Time 

(hour) 
𝛼𝑣,𝑡𝑐𝑟  𝛼𝑓,𝑡𝑐𝑟 𝛽𝑝,𝑡𝑐𝑟  𝛽𝑓,𝑡𝑐𝑟 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 0 0 0 0 

8 0 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 0 0 1 

19 0 0 0 1 

20 0 0 0 0 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 0 

Time 

(hour) 
𝛽𝑣,𝑡𝑐𝑟  𝛾𝑝,𝑡𝑐𝑟 𝛾𝑓,𝑡𝑐𝑟 𝛾𝑣,𝑡𝑐𝑟  

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 1 0 0 0 

8 1 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 0 0 0 

19 0 0 0 0 

20 0 0 0 0 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 1 0 0 

 

Table 7. Binary variables of suggested model 

Time (hour) 𝑋𝑣𝑡 𝑋𝑓𝑡 𝑋𝑝_𝑢𝑝𝑡𝑐𝑟 𝑋𝑝_𝑑𝑤𝑡𝑐𝑟 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 0 0 

4 0 0 0 0 

5 0 0 0 0 

6 0 0 0 0 

7 1 0 0 0 

8 1 0 0 0 

9 0 0 0 0 

10 0 0 0 0 

11 0 0 0 0 

12 0 0 0 0 

13 0 0 0 0 

14 0 0 0 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

18 0 1 0 0 

19 0 1 0 0 

20 0 0 0 0 

21 0 0 0 0 

22 0 0 0 0 

23 0 0 0 0 

24 0 0 0 1 

 

Table 8. Electricity prices during each time of day 

Time (hour) Electricity price ($/MWh) 

1 128.99 

2 46.8426 

3 46.8426 

4 46.8426 

5 46.8426 

6 46.8426 

7 60.8188 

8 60.8188 
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9 128.99 

10 128.99 

11 128.99 

12 128.99 

13 128.99 

14 234.213 

15 234.213 

16 234.213 

17 78.4006 

18 78.4006 

19 128.99 

20 234.213 

21 234.213 

22 234.213 

23 304.094 

24 234.213 

3.3.  Results Analysis 

This section covers findings obtained from various 

scenarios. 

3.3.1.  Pareto Optimal Solution Comparison 

Results obtained from Pareto optimal front at each 

scenario presented above are used to determine ranges of 

variation for the objective functions in different scenarios, as 

outlined in Table 9. and depicted in Fig. 9, Fig. 10, and Fig. 

11. The investigation of results shows that solutions obtained 

by the suggested model dominate those of other cases. This 

means that the minimum operating cost and the minimum 

wind curtailed power have been obtained. It is noteworthy that 

the minimum curtailed wind power that can be obtained from 

the suggested model is zero (kW). This means that the 

suggested model can effectively eliminate curtailed energy, 

which cannot be achieved by other scenarios. 

 

Table 9. Comparison of objective results for each scenario 

Scenario 
Max 

𝑂𝐹1($) 

Min 

𝑂𝐹1($) 

Max𝑂𝐹2 

(kW) 

Min𝑂𝐹2 

(kW) 

1 6534.9 6534.9 685.0 685.0 

2 6766.1 6531.0 611.5 280.0 

3 6498.6 6498.6 107.6 107.6 

4 6491.89 6491.89 - - 

 

 

Fig. 9. Min, Max, and the chosen value of  total operating 

cost of different scenarios 

 

 

Fig. 10. Min, Max, and chosen value of wind-curtailed 

power of different scenarios 

 

Fig. 11. Best solution of each scenario 

3.3.2.  Wind Power Output 
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Hourly output of wind power for each case is presented in 

Table 10. and Fig. 12 

 

Fig. 12. Wind output power of different scenarios 

Table 10. Output wind power at each scenario 

Time 

(hour) 

Available 

wind power 

Scenario 

1 

Scenario 

2 

Scenario 

3 

1 0.548 0.548 0.548 0.548 

2 0.515 0.515 0.515 0.515 

3 0.490 0.490 0.490 0.490 

4 0.480 0.480 0.480 0.480 

5 0.471 0.471 0.471 0.471 

6 0.478 0.478 0.478 0.478 

7 0.501 0.434 0.434 0.501 

8 0.521 0.410 0.410 0.521 

9 0.565 0.565 0.565 0.565 

10 0.630 0.630 0.630 0.630 

11 0.671 0.671 0.671 0.671 

12 0.682 0.682 0.682 0.682 

13 0.697 0.697 0.697 0.697 

14 0.667 0.667 0.667 0.667 

15 0.653 0.653 0.653 0.653 

16 0.656 0.656 0.656 0.656 

17 0.699 0.699 0.699 0.699 

18 0.800 0.637 0.757 0.755 

19 0.787 0.524 0.697 0.787 

20 0.749 0.749 0.749 0.749 

21 0.710 0.710 0.710 0.710 

22 0.647 0.647 0.647 0.647 

23 0.597 0.597 0.597 0.597 

24 0.587 0.506 0.519 0.524 

Time 

(hour) 

Available 

wind power 
Scenario4 

1 0.548 0.548 

2 0.515 0.515 

3 0.490 0.490 

4 0.480 0.480 

5 0.471 0.471 

6 0.478 0.478 

7 0.501 0.501 

8 0.521 0.521 

9 0.565 0.565 

10 0.630 0.630 

11 0.671 0.671 

12 0.682 0.682 

13 0.697 0.697 

14 0.667 0.667 

15 0.653 0.653 

16 0.656 0.656 

17 0.699 0.699 

18 0.800 0.800 

19 0.787 0.787 

20 0.749 0.749 

21 0.710 0.710 

22 0.647 0.647 

23 0.597 0.597 

24 0.587 0.587 

 

    Results of the investigation into critical times and wind 

output power have provided evidence to support the concept 

that wind curtailment occurrences are related to ramp-

up/down limits of the generator. In each scenario considered 

in this study, wind-curtailed power occurred at critical times.  

    Thus, by taking into account ramp-up/down limits of 

generator, it is possible to improve the accuracy of the DR 

programs and optimize the operation of power system to 

reduce wind curtailment. 

3.3.3. Proposed Model Analysis 

In this section an analysis of the suggested method is 

investigated. As indicated in the results,  

𝑋𝑓𝑡 =  {
       1   𝑎𝑡 𝑡 = 18,19

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
     } 

𝑋𝑣𝑡 =  {
     1   𝑎𝑡 𝑡 = 7,8   

 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
  } 

𝑋𝑝_𝑢𝑝𝑡𝑐𝑟 =  {0 𝑎𝑡 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒𝑠 } 

𝑋𝑝𝑑𝑤 𝑡𝑐𝑟 =  {
    1   𝑎𝑡 𝑡 = 24  
 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   }  

Which mean that  the ramping limits could be breached at 

certain critical times during the valley period (𝑡 = 7,8), flat 

period (𝑡 = 18,19), and peak period (𝑡 = 24), which increase 

the likelihood of wind curtailment events. The wind output 

power subsection above identifies wind curtailments at 

various scenarios, as presented in Table 11. 

Table 11. Wind curtailment times 

Scenario 
Wind curtailment times 

(hr) 

1 𝑡 =  7, 8, 18, 19, 24 

2 𝑡 =  7, 8, 18, 19, 24 

3 𝑡 = 18, 24 
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      In Scenario 2, where the incentive-based demand response 

program (IBDRP) is applied, there is no notable change in 

wind curtailment hours. This is because IBDRP only focuses 

on load reduction during peak hours, which is not effective in 

mitigating wind curtailment. 

      Scenario 3 exhibits a reduction in wind curtailment 

power due to the application of price-based demand response 

program (DRP), which shifts the load from peak hours to 

valley and flat hours. This reduces wind curtailment at some 

times during valley and flat periods by increasing the load. 

However, wind curtailment cannot be eliminated at 𝑡 = 18 

due to high wind power and at 𝑡 = 24 due to reduced load at 

peak period, which does not help in reducing curtailment. 

      However, in scenario 4, the proposed DR model adjusts 

electricity prices during critical times of valley and flat periods 

(𝑡 = 7,8,18,19) and at 𝑡 = 23 during peak period when 

the ramping limit is met due to ramping down. This 

effectively eliminates wind curtailment at all times. 

Overall, this section highlights the innovative approach used 

in this study by adjusting the demand response 

program during critical technical times of generators, which 

helps to reduce wind curtailments and promote the integration 

of more renewable energy. 

3.3.4.  Technical Comparison  

     In this section, various technical parameters that are critical 

to the distribution network's optimal operation are outlined. 

     These parameters include minimum bus voltage, peak and 

valley loads, VDI, active and reactive power losses, load 

factor, load shape, peak-valley distance, and peak-

compensate. 

     At each scenario’s best solution, technical aspects of load 

profile of test system are outlined in Table 12. 

The results shown in Table 12. demonstrate that 

implementing demand response programs (DRPs) leads to 

improvements in technical parameter values in contrast to the 

base case with no DRP. The suggested model (Scenario 4) 

outperforms single PBDR or IBDR approaches, achieving the 

best load factor and peak-compensate factors of 89.4% and 

6.7%, respectively. Scenario 3 and Scenario 4 achieved the 

best load shape of 1.3 and peak-valley distances of around 

24%. 

Additionally, scenario 2 resulted in the least system losses 

and Voltage Deviation Index (VDI) as load reduction occurred 

in this scenario. Results establish the performance of the 

suggested model in improving technical performance of the 

power system while also reducing energy waste and costs. 

Table 12. Technical comparison of scenarios 

Scenario 

Min 

V 

(P.U) 

Load 

peak 

(MW) 

Load 

valley 

(MW) 

P-loss 

(MW) 

 

Peak-

valley 

Distance 

(%) 

 

1 0.959 3.715 2.462 1.528 33.7 

2 0.960 3.536 2.462 1.470 30.4 

3 0.961 3.471 2.644 1.493 23.8 

4 0.961 3.467 2.626 1.488 24.2 

Scenario 
Q-

loss 

Load 

Shape 
VDI 

 

Load 

factor 

(%) 

 

Peak-

compens

ate (%) 

1 1.068 3.3 0.018 83 0 

2 1.026 2.4 0.017 85.93 4.8 

3 1.043 1.3 0.017 89 6.5 

4 1.040 1.3 0.017 89.42 6.7 

 

 

3.3.5.   Economical Comparison  

In this section, economic characteristics of the load 

profile for each scenario's best solution are presented, 

including total operating cost (decomposed into generation 

cost, wind curtailment cost, and DR cost) and the cost of 

customer bill which are reported in Table 13. 

Table 13. Economical comparison of scenarios 

Scenario 
Generation 

Cost ($) 

Wind 

Curtailment 

Cost ($) 

DR Cost 

($) 

1 6500.61 34.30 - 

2 6480.06 18.97 97.39 

3 6493.24 5.38 - 

4 6491.89 - - 

Scenario 

Total 

Operating 

Cost ($) 

 

Customer 

Bill ($) 

 

Bill 

Reduction 

(%) 

1 6534.91 11139.8 - 

2 6596.43 10840.6 2.68 

3 6498.62 10611.4 4.74 

4 6491.89 10644.2 4.45 

 

The suggested model has a minimum total operating cost 

of 6491.89 ($), which is the best scenario from a utility point 

of view. This result indicates that the suggested DR program 

is able to minimize operating costs of system. Whereas, 

scenario 2, in which IDPD is implemented, has a maximum 

operating cost of 6596.43 ($) and a DR cost of 97.39 ($), 
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making it the least desirable scenario in terms of total 

operating cost. 

From the viewpoint of customer, the suggested model 

leads to a 4.45% bill reduction, which is almost equal to bill 

reduction obtained from Scenario 3. This result indicates that 

the suggested DR program can provide significant financial 

benefits to customers while also improving technical 

performance of power system. 

4. Conclusion  

This paper outlines a  strategy for optimal operation of 

distribution systems, taking into account impact of DR 

programs and wind curtailment energy. The suggested DR 

program adjusts electricity prices at critical times at which 

wind curtailments may occur due to ramp-up/down limits or 

minimum generator output limit, to encourage load shifting 

and eliminate curtailed wind power. The approach is presented 

as a multi-objective optimal power flow (OPF) problem with 
objectives of minimizing total utility operating cost and its 

corresponding curtailed wind power. 

 The simulation experiments conducted on the enhanced 

IEEE 33-bus system demonstrate the superiority of Scenario 

#4, which utilizes the proposed demand response 

program (DRP), in providing the most desirable technical 

characteristics compared to other scenarios. Based on the 

results, the proposed model achieved a curtailed wind power 

output of zero while simultaneously achieving a high load 

factor of 89.4% compared with 83% of base case, which 

indicate the effectiveness of the proposed DRP in 

reducing wind curtailment and improving the technical 

performance of the power system. 

Moreover, the suggested model exhibited 

superior economic characteristics by significantly reducing 

the daily operating cost to $6,491.89 compared to $6,534.90 

in the base case. The proposed model also resulted in a 

reduction of customer bills by 4.5% relative to the base case, 

indicating its potential benefits to the utility and customers. 

These significant values for power system, utility, and 

customers illustrate the effectiveness of the proposed DRP in 

improving the overall performance of distribution systems. 

Overall, findings suggest that the suggested approach is a 

powerful approach for enhancing performance of distribution 

networks while considering impacts of DR programs and wind 

curtailment power, which be used to inform policy decisions 

and improve the reliability and efficiency of future intelligent 

distribution networks. 

       Future research may integrate wind and load uncertainties 

into the model and comparing it with an Energy Storage 

System (ESS) approach. 
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