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Abstract- The rapid gradual shifting of electric vehicles (EVs) as a part of the green transition of electric mobility (e-mobility) 

has brought one of the most challenging issues for the urban planner on how to allocate the Public Electrical Vehicle Charging 

Station (PEVCS) for future urban ecosystems in a technical and economic viability achievement. This study employed the 

Neural Network method, which uses a supervised learning model to simulate a model with two essential parameters: the Origin 

to Destination (OD), which is modularly arranged over a square area of 5×5 kilometers per square, and the energy 

consumption prediction. The number of EV units is limited to twenty-five thousand for computation efficiency, and the study 

area is located in North Jakarta, Indonesia. Markov Chain Model (MCM) and Monte Carlo Simulation (MCS) were applied in 

the simulation. The electric power grid as a supply point of connection (PoC) was included in the computation. The proposed 

model aims to bridge the gap between the demand requirements of PEVCS based on the commuting behavior of EV users and 

the charging point on the availability of existing supportive grid infrastructure toward urban landscapes and innate traffic 

nature, especially in the initial transitioning of developing countries which are different compare with Europe, China, and the 

United States. On the basis of the model traffic density, battery consumption, proximity distance between the supporting grid 

feeder, and on-the-go user behavior, it is recommended that the PEVCS is suitably allocated in the commercial area 66.6 % out 

of 33.3 % for residential areas. 

Keywords Electric Vehicles, Public Electrical Vehicle Charging Station, Neural Network, Electric Infrastructure, 

Randomization Component, Point of Connection 

1. Introduction 

The public electric vehicle charging station (PEVCS) is the 

essential infrastructure for electric vehicles, and how to 

govern the optimal allocation has become a challenging issue 

in all countries. Consequently, the charging station 

placement can be very unalike depending on government 

policies, network availability, and local communities. 

Generally speaking, the Asian markets for EVs in Indonesia 

do not fundamentally refer to the intention of reducing 

carbon emissions only but also avoiding government 

regulations restricting commuters from driving on the main 

street and tax deductions. Therefore, most EV users also 

have a conventional car as the first option. The assessment of 

why EVs are only popular as a second option for commuting 

transportation can be further read in another publication [1]. 

In line with this, EV distribution is mostly denser in the 

urban area, making its services less available in rural areas, 

and EV users in Indonesia are afraid of using EVs for long, 

traveling across to other regions from central cities. 

However, this study attempts to assess the feasible location 

for a PEVCS to support the development of EV networks in 

the suburban area in North Jakarta. The case study is taken 

on North Jakarta, which is prominent as a port area, and the 

traffic of people and goods is intensive, which makes it 

suitable for future evident based-research. Although 
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conventional automobiles still occupy a considerable portion 

of private and commercial vehicles in Indonesia, a glimpse of 

market change from emission vehicles to e-mobility vehicles 

has happened and will continue growing in the upcoming 

days. When it comes to emissions, traditional engines 

contribute to the release of greenhouse gases (GHG), EVs 

can positively lower the effect of CO2 (carbon dioxide), CH2 

(methane), and N2O (nitrous oxide) in the atmosphere 

through specific periods [2]. If we look in detail, there are 

two categories of EVs based on their drive train systems: 

battery EVs (BEVs), which rely entirely on an electrified 

powertrain system powered by the battery system. The power 

is kept in a battery system and released when required by the 

so-called battery management system (BMS). More efficient 

motors in the drive system extend the driving range and 

decrease battery size requirements. While hybrid EVs, 

whether plug-in or pure hybrid, use a conventionally fueled 

engine combined with a battery system. A pure hybrid uses a 

fueled engine as primary and simultaneously generates 

restored power through regenerative braking and reuses it 

when needed without any direct charging connection to the 

power plug. Whilst plug-in uses the combustion engine for 

the secondary to repowered the main electrified drivetrain 

powered by a battery system. Similarly, BEVs and plug-in 

hybrid EVs (PHEVs) must be charged from the power grid: 

through charging on-grid or off-grid mechanism. Aside from 

that, the power rating charger is categorized into three 

charging levels: low, fast, and ultrafast [3].  

In this study, we exclude individual home charging, unlike in 

the previous research [4], which uses it as an option. We 

realize that not all commuters will install additional electric 

power in their house which will be actually raise their utility 

bill. Since majority of households in Indonesia have an 

electric power range from 1300-3300 kVA for their 

electricity power[5]. So, charging an EV in own private 

house would be bring an extra cost and possibly take a long 

time to fully charged (slow charging level). In addition, the 

safety and environmental issues in a developing country like 

Indonesia are also considered; a similar study about how 

criminality and environmental problems (flooding and land 

subsidence) indeed can affect the allocation of PEVCS in 

developing countries. This issue can be further read in other 

publications [5]. Another rethinking is that the growth of the 

EV industry is influenced by where the government is siding 

[6]. Thus, this study attempted to determine how significant 

the placement of the charging station is based on geolocation 

and spatio-temporal modeling leveraging remote sensing 

techniques (travel orientation, proximity distance, and routes 

delineation) and artificial intelligence (Neural Network, 

Markov Chain, and Monte Carlo Simulation and Traveling 

Salesman Problem) as supporting methods [7], [8]. While the 

majority of scientists have thoughts about EVs and their 

relationship to the socioeconomic condition and grid feeder 

stability found in [9], those rarely take a point of view from 

electrical infrastructure accessibility. Open spaces and 

parking lots might be prospective places for an allocation of 

PEVCS in developed countries or sustainable municipal 

areas, as this is also supported by previous research[7], [9]. 

Nevertheless, this is not always relevant for developing 

country to where open space and parking are not 

continuously prevail.  

In the context of environmental conditions and EV types 

[11], some EVs that can be detailed through useful references 

found in ev-database.org or factory release [10] have 

different battery capacities and modes of driving features. 

Hence, our simulation unavoidably tackles divergences 

concerning those parameters. Another consideration arises 

since third-world countries mostly do not have strict 

regulations and firm planning for household power electricity 

yet; thus, consumers can inquire for additional capacity by 

renewing the existing subscribing contract through the utility 

to establish home charging units (HCUs) [11]. In line with 

that, Indonesia's climate and atmospheric conditions can vary 

over the time hours; heavy rainfall and heat temperatures can 

suddenly occur multiple times uncertainty and may degrade 

EV batteries. Hence, it potentially reduces battery capacity 

and useable lifetime cycle. Moreover, frequent air 

conditioning is mostly used to cool the cabin temperature and 

provide convenient air due to heat and air pollution in Jakarta 

[12]. The spatial planning for PEVCS optimization based on 

the supply and demand in a certain area was demonstrated by 

He et al. [13] in their publication. They stated that the 

"presents data may not inherently resemble the future 

demand of EV charging facilities" and revealed that having 

different charger types in one PEVCS rather than creating the 

new one is better.  

2. Literature Review 

a. Conceptual framework 

Spatio-temporal implementation for identifying the best 

allocation for PEVCS has been used in some literature; one 

of the comprehensive methods is what had done by Yi et al. 

[14] in their publication. They deliver information about 

statistical analysis and behavior analysis, concluding that 

charging station is better to install in working area than in 

residential area as a second list. Through prior studies, the 

analysis to determine the optimal location for charging 

station placement had been performed by employing Monte 

Carlo Simulation to generate randomness variables and 

presenting scientific modeling; this deliver satisfactory 

results if incorporated with the hidden Markov chain model 

as the conceptual framework to illustrate the cycle of 

movement in time series [15]. The EV itself needs to be 

considered when implementing the spatio-temporal EV 

charging station is the EV itself, and previous research 

declares that they cannot use the real object in real condition 

if the large number of EVs is part of their model. Hence, 

agent-based modeling (ABM) is being introduced as a 

solution [16]. Through it, the data driven for EV mobility to 

determine PEVCS can be simulated, and how they are 

connected with surrounding parameters like travel routes, 

travel distances, energy prediction, and socio-economy 

conditions can be attached, as this is similar to what is 

performed by actual monitoring model with realistic data. 

The difference might be only for detail of EV registration 

number and traffic frequency [17]. Meanwhile, the 

Geographic Information System (GIS) is great knowledge to 

help understand better the distribution of the model and 
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figure out the character of charging stations and type based 

on community needs and supporting infrastructure, i.e., grid-

feeder and load capacity constraint. Hence, they have 

become vital in scientific analysis and interpretation. 

Moreover, the combination of GIS and righteous decision-

making methods can result in efficiency in engineering and 

economic problem for PEVCS, as mentioned in [5], [18].  

According to Presidential Regulation Number 55 of 2019, 

electric vehicles will be used to substitute the number of 

combustion vehicles. The regulation reflects the desire to 

improve the climate for the production and operation of 

electric cars in Indonesia as well as plans to limit the use of 

fossil fuels for motorized vehicles. The regulation also 

covers the legal aspects of charging stations: public charging 

stations (gas stations, government offices, shopping centers, 

and public parking lots) and private charging stations 

(government offices and residential areas). In addition, in the 

framework of accelerating the implementation of the electric 

vehicle program, the President of the Republic of Indonesia 

issued Instruction No. 7 of 2022. The presidential instruction 

regarding using battery-based electric motorized vehicles 

(Battery Electric Vehicles) as operational service vehicles 

and/or individual vehicles for central government agencies 

and local governments The electric motorized vehicle 

acceleration program must be balanced with a proportional 

distribution of charging stations. On that occasion, spatial 

modeling was used as part of our analysis, a fascinating tool 

that enabled us to determine the best EV charging station 

placement. In fact, as the intricacy of the situation increase, 

the model can be evolved. This model's approach utilized 

neural network techniques. Similar to prior research [19], 

[20] performed a machine learning (ML) combination and 

the Monte-Carlo method to gain spatial sensing and 

weighted-nearest point values in the geo-model. This study 

develops and fills the gap between scientific and communal 

needs to determine the best EV charging station allocation in 

North Jakarta, Indonesia. 

Conversely, our model does not explain electricity needs in 

every sector in Indonesia and the detrimental effect of an EV 

charging station on the grid; therefore, further reading can be 

read in other relevant publications [21]–[23]. Other 

interesting research about how to manage the power control 

system for EVs that take sources from renewable energy to 

decrease energy consumption from the standalone electrical 

network can be detailed in some publications [24], [25]. 

Since we tend to approach the allocation of PEVCS based on 

the user pattern side and strive out the load penetration and 

any further effect that influences the grid ecosystem, we 

recommend comprehensively reviewing another publication 

that focuses on this matter [26]–[28]. Generating the network 

model of EV by route tracking to estimate the best location 

of charging stations can be accomplished by employing the 

GIS technique and some R-code for DL implementation. The 

R-code is widely known for GIS integration and has a robust 

library like phyton, an open-source programming language 

[29]. 

b. Public EV Charging Station model and its assignment 

North Jakarta, one of four prestigious urban residential areas 

in Jakarta, may be fostered as a modular area to simulate EV 

charging installation. When taking part in the network 

ecosystem and grid interaction, PEVCS can have a critical 

impact on the user in an urban area; these groups of users 

have different backgrounds, such as educated individuals, 

high-income personnel, or young to mid ages persons [30]. 

This also put a mindset for the majority of Indonesian people 

that EVs are still categorized as expensive vehicles; hence, 

ownership is mostly from full job person with mid-high 

income individual with an awareness of technology 

understanding and has more than one vehicle, which 

conventional car should be in place among [1], [31]. 

Accordingly,  due to low-income user can afford to buy EVs 

out of the region where they are settled and can be excluded 

from our proposed modular model. To generate a model 

based on those criteria, we attempt to look over the socio-

economy level, which is also similar to previous research 

about the extent to which the individual buys EVs in 

uncertainty regulation [32], [33]. The detail of the area of 

interest (AoI) can be seen in Figure 1. The ArcMap software 

and R-codes are used in the simulation model. In correlation 

with that, three models of automobile specification were 

selected as part of this study; this is a common EV model in 

Indonesia. Therefore, we have to make a case and 

assumption in this model to limitate the computational 

process and deliver relevant information to the prospective 

readers. We generated an arrangement of steps and 

assumptions which can facilitate the model: 

Step-1: identification of prospective place 

Premise 1: EV vehicles are relatively expensive in third-

world countries; thus, mid-high-income individuals is 

preferable consumer for market sale [34], [35]. 

Premise 2: The urban city is well developed than suburban or 

even rural areas; this also become the main concern of EV 

consumers to stay and live in the urban area [14], [36] 

Step-2: Characterized EV types 

Premise 1: the low-mid ranges EV is a favourite in the urban 

area. Also, hybrid types of vehicles are still relevant to 

whomever citizens want to travel across the city supporting 

neighbours, although the number of them is still in small 

proportion compared to the overall EV user; this explains the 

"range anxiety" of EV users when traveling out of the city 

[37]. 

Premise 2: BEV is the basic model in this simulation, which 

is relevant to the three types of vehicles being modeled in 

this study. No hybrid types or another green powered 

vehicle, i.e., fuel cell and related gas powered vehicle  [23], 

[38] 

Step-3: Infrastructure readiness 

Premise-1: the closer PEVCS with the grid utility, the lower 

cost of the infrastructure that needs to be built, and some 

recommendations to change charging time to daytime 

charging to shift peak load to the nighttime are also preferred 

as found in [37], [39].  
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Premise-2: Grid connectivity and IoT (Internet of Things) 

can be crucial to EV users to monitor the traffic charging 

during peak load and scheduling or rerouting their vehicle to 

the quieter charging station [40]. 

 

Figure 1. The simulation area of the EV charging station 

based on network analysis in GIS. 

Step 4: Travel distance and trajectory 

Premise-1: the mobility of EVs is limited to this modular 

region with no transfer from outside and no leaving vehicle 

from this study area 

Premise-2: the distance is not limited; however, the time for 

the model is only twenty-four hours of observation with five 

stops; the location of stops can be varies based on the 

programmable random variables (PRV) [41]. The stochastic 

model was developed when applicable in this simulation 

model. 

To accomplish our study, we generated the route's network 

based on the road position in the study area, and the vehicle 

track can be determined based on this road network (see 

figure 2)  

 

Figure 2. Roads map in the study area 

In this simulation, three types of EV brands take into the 

model; (1) Tesla Model S, (2) Hyundai Ioniq 5, and (3) 

Wuling EV. The attainable distances were then evaluated 

based on the factory statement, and we realized that those 

depending on every user's driving styleit might be less or 

more than what it stated in factory manuals[42]–[44]. For 

PEVCS types and conditions, we refer to what stated by 

Mastoi et al. for the requirement of public charging and 

semi-fast charging [45]. Those can be seen in Table 1 

Table 1. Electric Vehicle Charging Infrastructure (Modified 

from [45]) 

Type1 Type2 Type3 

   

Home charging 
Work and Public 

Place Charging 

Dedicated placed 

charging 

EVs are charged via 

AC power supply at 

normal (level-1) 

EVs are charged via 

AC power supply at 

semi-fast (level-2) 

Electric Vehicles 

are charged via a 

DC power supply at 

a fast (Level-3) 

Voltage 120V 1-

Phase AC, charging 

Loads 1.4-2.5 kW 

Voltage 208 V or 

240 V with 1-phase 

AC, charging Loads 

have a range 

between 2.5 to 19.5 

kW 

Voltage 240V or 

480 V 3-phase AC, 

charging loads have 

a range between 45-

90 kW 

 

Following on what is in table 1, PEVCS is recommended in 

accessible space, away from flood and routinely passed by 

EV either in day or night. The Tesla Model S specifications 

can be looked into in detail on their company pages [43], 

similar to Hyundai Ioniq 5 [44] and Wuling EV [42]. Before 

completing the input for the simulation model, we set up the 

EV driving behavior by random values generated from user 

experiences in conventional automobile. Therefore, some 

fluctuations in state of EV while traveling during a day trip 

approximately can be seen below. The illustration can be 

seen in Figure 3.  

 

          

S
ta

te
 o

f 
E

V
 

         

         

         

         

         

         

         

3 6 9 12 15 18 21 24  

Hours 

Figure 3. Illustration of EV driving pattern 

Chargi

ng 

Driving 
Idle/traffic 

jam 

Driving 

Re-

Chargi

ng 

Simulation of EV Driving Pattern in a day 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
G. P. Dinanta et al., Vol.13, No.2, June, 2023 

 571 

This study took samples of three small EV cars which can be 

seen in Figure 4 (real images can be different depending on 

the user's own). 

 

(a)                                        (b) 

 

(c) 

Figure 4. The design of EV vehicles in this study Tesla 

Model S (a), Hyundai Ioniq (5), and Wuling EV(c). 

 
3. Implementation of Spatial Modeling 

The spatial relationship between the energy infrastructure 

and trip distance from EVs is examined in this study using 

spatial modeling. As a result, they can be employed to 

establish the best placement for the electric vehicle charging 

station. Shapefile data from OpenStreetMap and the 

Environmental Systems Research Institute (ESRI) database 

were used in this simulation. Furthermore, Figure 5 depicts 

the study's framework. 

 

Figure 5. The simple framework concept of this study 

Therefore, the R-code plays a prominent role in this 

simulation model, and a library pack is required to run the 

simulation. Further reading about how to create and 

synchronize the dataset to be able to be executed and plotted 

in R-Studio or, in another way, can be read in Lovelace's 

publication [8]. Geocomputation in R-codes is something 

powerful and user-friendly. Lovelace et al.[8] in their 

publication, explains the application of geocomputation in R-

codes for transportation models, employing the "sf", "terra", 

"spData" and "OSM" packages for demonstrating the 

transportation model from a zone of origin and zone of the 

destination.  

The complex transport modellers using geographic analysis 

enable to capture of the transport system's substantial 

meaning and network, demonstrating the potential spatial 

sensing analysis [46]. The approach method of traffic 

network originated from the theory of the travelling salesman 

problem where are selected the shortest routes through a 

group of N vertices (N is a number of network's nodes) [47], 

[48]. We attempt to perform the same steps by dictating the 

EV vehicle's stop, not only two nodes (start and end of the 

trip) but five nodes in series (start, three temporal stops, and 

end of trips), this called as Origin to Destination (OD), as 

seen in Figure 6. 

 

     

Start    S1         S2               S3             S4   S5/End 

Figure 6. The traveling scenario to simulate PEVCS in an 

urban area (modified from [45]) 

Where S is the stop point, according to the design of the 

logical trip, If we had 2500 EV cars, then 12500 nodes could 

be generated. Those nodes represent the movement of a 

vehicle in time series. The travel distance of the simulated 

vehicle can be seen in figure 7. However, what is in figure 7 

is just a few samples because plotting all vehicles will reduce 

the clarity of the spatial distribution map and is not 

representable for this article. Furthermore, The start and stop 

point of the EV is still in the AOI (no vehicle trip outside of 

the boundary area). 

 

Figure 7. The spatial distribution map of the EV sample 

inside the AOI with five stops point (different color means 

different vehicle ID) 

Travel distance 
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Following the previous input dataset, the EV specification 

has been included in the model, and we are attempting to 

search for CCTV records in the nearby zone. However, no 

record can be accessed freely, so the artificial data was made 

in the sense of traffic density and logical concepts. If the 

velocity of the EV is related to the duration of the trip, the 

empirical equation can be written as: 

,            (1) 

Where the  is the velocity of EV, e is the end position (in 

kilometers), tei is the duration of the trips in seconds,  is the 

distance of the trips, and i is the initial/start position. A detail 

of the frequent stop-and-go model is illustrated in Figure 6; 

additionally, the speed prediction with adequate traffic flow 

model and neural network decision making can be read Li et 

al. [49] publication. In simple way, the empirical equation to 

estimate the trips-track distance can be written as [50]: 

         (2) 

Since the dragging force c, and h is driving behavior can be a 

factor that affects the velocity of the EV, F is the force 

factor, q is forward forces from EV's torque, N is the 

perpendicular normal force, b is pulled force from brakes 

when activated, and  is road surface roughness, then the 

equation for an estimate the travel distances can be 

simplified into: 

+              (3) 

              (4) 

  (5) 

Where SP s pressure to the pedal and the remains velocity, it 

can be 0 if the vehicle starts from the beginning. the traveling 

salesman problem (TSP) concept can be related to the EV 

trips in our AOI and simulation model.  

The TSP and MCM are essential to selected the fastest route 

in the traffic network in AOI. Recent research about how it 

was able to help to solve the PEVCS allocation model issue 

through some alternatives can be seen in table 2.  

Tabel 2. information summary of the latest research on 

PEVCS allocation modeling based on spatial planning. 

Researcher GIS 
MCM 

and/or 

MCS 

TSP ABM 

Neural 

network 

or other 

decision 

making 

method 

Rodrigues et al., 2019 √ √    

He et al., 2022 √     

Xu et al., 2023 √ √    

Wu et al., 2023 √    √ 

Pillai et al., 2022 √   √  

Costa et al., 2018 √    √ 

Shepero & 

Munkhammar, 2018 
√ √    

Li et al., 2022 √    √ 

Yi et al., 2020 √    √ 

Anand et al., 2020 √ √    

Gauglitz et al., 2020 √    √ 

Huang et al., 2022 √   √  

Li et al., 2023 √    √ 

Jenkins & Kockar, 

2022 
√ √   √ 

Ge et al., 2020 √ √   √ 

Tikka et al., 2022 √    √ 

Zhang et al, 2022 √    √ 

Pagany et al., 2019 √     

Li & Jenn, 2022 √    √ 

 

According to the summary in table 2, the spatial modeling 

have been used by all of the previous researchers. Therefore 

our study uses the same way for GIS as the basis for analysis, 

ABM for real-time approaches, MCM for the stochastic 

model, MCS for randomness OD, and add in the TSP as the 

algorithmic employed by EV user to select the fastest routes 

(driving behavior), which never being used by any prior 

researcher above, this expected to bridge the gap from what 

they did before. Intending to give worthy recommendations, 

we calculate the proximity of the nearest electricity tower to 

a potential feeder (which can be immediately installed) to 

generate possible PEVCS. 

On the other hand, the charging station infrastructure 

connected to the grid has several types of locations, whether 

commercial, workplace or residential. Figure 8 shows the 

power supply distribution from the utility grid to the 

consumer location in different voltage and dedicated 

locations [15]. This topology strongly relates to the decision 

to allocate the public charging station. 

Step Down

Transformer

A2

A

A1

A3

A5A6A7

A4

A10

A8

A9 A11

Low Voltage

Infastructure

B3

B B1

B2

B4

B6

B9

B7

B5

B8

B10B11
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Infastructure 

Upper Layer 

External Grid

Representative Area
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Low Voltage Lines

Representative Area

RA CA

OA GA
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GA CA
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Office Area (OA)
Residential Area (RA)

Commercial Area (CA)

Government Area (GA)  

Figure 8. the illustration of power supply distribution with 

voltage infrastructure variation to support an allocation of 

PEVCS demand (modified from [15].) 
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4. Network Modeling and Analysis 

Because we had time series movement of the EV, we can 

calculate the reachable distance from the EV by network 

analysis in GIS (by conduct sophisticate samples) and 

perform the TSP to estimate the rest of the simulation (see 

Figure 9). 

 

(a) 

 

(b) 

Figure 9. The simulation of EV travel distance with start (a) 

and end point (b) in the AOI (the travel trajectory samples is 

previously shown in Figure 7). 

From our model, the TSP takes the main part of the process 

after OD has been declared; the analysis regarding the best 

route for trips inside the AOI was accomplished by R 

programming language with "terra", "spData", "sf" and 

"tmap". Where it driven to an analysis of how much time 

spent during the travel process. This destination route can be 

plotted and seen in Figure 10.  

 

Figure 10. TSP model in AOI, based on the five traveling 

scenarios for EV, this is important for determine the frequent 

stops area and potential PEVCS.  

Since the problem of driving behavior is more complex than 

just declared "stop and go", as explained in equation (4), to 

where the situation is close to the non-linear approach. 

Furthermore, the random simulation of driving behavior can 

also be conducted by generating the EV's pedal intervention 

aside from TSP algorithms, as illustrated in Figure 11(a).  

 

 

 

Figure 11. (a) An illustration of pedal intervention (b) and 

the velocity samples changes of EV during the trips that 

affect the driving behavior. 

EV trips start point 

EV trips-start point 

EV trips-end point 

TSP model 

(samples) 

(a) 

(b) 
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Moreover, since we have generated the velocity value from 

twenty-five hundred EVs in AOI, each EV can give an 

outcome of velocity and distance in time series; the variation 

of the EV's velocity can be seen in Figure 12. 

 

Figure 12. The scatter graph of velocity distribution based on 

the simulation model, which is generated by the velocity 

changes of EV during its trips (a) 

In our study, we estimate the reachable distance in one hour; 

this is necessary because we can predict the distance in one 

hour and estimate where the EV will drainaged its battery (if 

there is no charging in the travel simulation). So, the 

illustration of attainable distance based on the EV simulation 

model can be seen in Figure 13. Where in average, for one-

hour trips, it's ±18.2 km based on the random generation of 

average velocity. 

 

Figure 13. The simulation of distance based on EV trips in 

1-hour observation. 

However, we understand that our velocity model was likely 

to have less accurate than real data. So, to validate the result, 

we did several observations of the actual condition based on 

google street view and the nearest CCTV that directly 

through in and out to the AOI. We have taken the vehicle 

traffic in the AOI and associated it with EV. Figure 14 

illustrates that premise.  

The neural network model is implemented in this study 

simulation to determine the dense area often passed by EVs. 

That area should be considered prospective for EV charging 

station installation. To do that, we cluster the EV parameter 

such as velocity, relative position in the AOI, and trip 

distance and estimate the power consumption of the EV base 

on the manufacturer database and general data center for EV 

[10]. 

 

 

 

Figure 14. Sample traffic of the small part of AOI and 

surrounding conditions for urban planning of PEVCS. 

Since traveling at AOI and Jakarta in general, when the 

daytime will increase the heat of EV, particularly inside the 

cabin, the EV user mostly turn on the air conditioning for 

cooling; this also consumes energy and drain the battery; 

therefore, we took temperature increment as our analysis part 

in a neural network. The neural network diagram can be seen 

in Figure 15. Later, the distribution map can be defined from 

the Figure 15 neural network data. This step leads to the 

denser region can be illustrated. 

 

Figure 15. Neural Network diagram to estimate the denser 

region and useful to delineate the prospective region for 

PEVCS. 

We are not using ROC (Receiver Operating Curve) to test the 

performance of a classification model because of the 

requirement to perform it; we must have the actual data of 

the EV, and that is not possible yet, due to there being no 

registered EV car in that large amount of number reside on 

the AOI, this study is to help future planning in EV if its 
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become main transportation for the community in our study 

area. 

The distribution map of EV traffic based on the MCS and 

TSP was then incorporated with artificial neural network 

(ANN) as decision-making (see Figure 16), showing some 

potential spots. The red color means that the area is 

frequently passed by EVs but does not indicate that the 

environment and infrastructure support it. 

 

Figure 16. Result in Maps from the modeling simulation in 

the AOI 

the following criterion corresponds to infrastructure; this 

component can be defined in table 3 below 

Table 3. Component requirements for PEVCS in AOI 

Description Item 

Public area (open space/parking 

lot) 

√ 

Close to the Utility Power Supply √ 

Less criminality and vandalism √ 

Not in the flooding area √ 

technology awareness (young till 

mid ages person) 

optional 

 

As a result of only five prospective areas (marked by circle-

buffer in figure 16) for PEVCS, two of them are close to the 

infrastructure and allocated in a residential area with constant 

EV traffic, and three of them are close to the communal area 

like (market or workplace area), from this, we conclude that 

sixthy percent  of PEVCS recommended built and install 

in the commercial area and fourthy percent in the 

residential area. 

5. Conclusion 

We did analysis for the suitable location for EV charging, the 

approach in driving behavior and spatial modeling was 

performed in this study. Furthermore, the network analysis in 

GIS was incorporated with MCS and neural network, and 

previous researcher has performed MCM; nevertheless, they 

did not implement the TSP algorithm. In addition, the TSP 

algorithm has been a powerful tool to generate the fastest 

route in the traffic ecosystem and estimate the EV trips in the 

simulation model. this study aims to bridge that gaps and 

strengthen the simulation model on top of that it helping 

communities in the AOI, to plans their needs of public 

charging installation. This study uses R-code as the main 

programmable language. The basic requirement for the EV 

charging allocation relies on five factors explained in table 3, 

but more importantly, the EV is still small compared to the 

conventional cars in this study area. Three brands were 

selected for our model (Tesla, Hyundai, and Wuling); they 

are simulated with ABM. Though the CCTV of AOI was not 

obtained exactly in this AOI, we validated our result with 

vehicle traffic from the closest CCTV near the AOI and used 

google street view to predict the mobility and assume the 

conventional as EV. We also take the complete specification 

of EVs from their manufacturer's web page. This study uses 

the geolocation and spatial concept with the attainable 

distance for brevity's sake and aims for the best place to 

install PEVCS in the area. Considering the security and 

infrastructure factors, it is revealed that a communal area 

with frequent EV traffic is preferable to dedicate as a 

prospective area for PEVCS. Even though the artificial 

dataset constructs the driving pattern based on the premise of 

congestion level, it's only a simulation that can deviate from 

the actual situation; it can be better or even worse in third-

world countries. Based on the simulation, the EV charging 

station can be installed in a residential area and commercial 

area of AOI where the users stop/park their EVs, sixty and 

forty percent, respectively. The model in this study is 

expected to give new perspectives on how important spatial 

models are to EV business.  

6. Discussions 

EV is something promising today. A lot of market 

demand affects the production of automobile units, and this 

is a challenging situation when the supported infrastructure 

could be more optimum in developing countries, PEVCS is 

the main concern. Urban communities have become aware of 

air pollution and expect better transportation in their daily 

lives, EV is unavoidable to attract urban communities. Even 

though the price is still categorized as an expensive for some 

people, the hype still goes up. However, in this study, we 

observed the readiness of North Jakarta with AOI as the main 

object, which might be transformed into a smart city. Despite 

of what we did in this study, we have limitation particularly 

in data collection and filtering, due to no actual PEVCS in 

AOI location, we cannot justify which type of suitable public 

charging in North Jakarta. 

Further research can study the social and economic 

impact of EV charging stations, whether it can increase the 

number of EV users or it will become costly in maintenance. 

The driving pattern and infrastructure have a significant role 

in EV development. Thus, stakeholders should make 

incentives and favourable regulations to satisfy EV users. 

The discussion about charging placement can be quite long if 

the social and economic factors included, the permission of 

the landlord and investors can influence them even more than 
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the engineering recommendation. We remark that social 

science and appropriate regulation can help many city 

developments, including the EV industries in urban areas. 

7. Nomenclature 

PoC Point of Connection 

PEVCS Public Electrical Vehicle 

Charging Station 

MCM Markov Chain Model 

MCS Monte Carlo Simulation 

OD Origin to Destination 

TSP Traveling Salesman Problem 

IoT Internet of Things 

PRV Programmable Randomness 

Variables 

AOI Area of Interest 

ABM Agent Based Model 

GIS Geographical Information System 

ANN Artificial Neural Network 

ROC Receiver Operating Characteristic 

Curve 

CCTV Cloased Circuit Television 
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