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Abstract- The power system network is one of the most extensively dispersed electrical engineering systems designed to 

transport the majority of electricity over distances of several kilometres from one end of the country to the other. New wind 

production units and balancing equipment are often added to an existing power system network as part of the integration of 

power projects. The network of an island power system is severely threatened in terms of security and protection due to the 

increased level of wind power generation penetration. To link the electrical system with smart environments based on Internet-

of-Things technologies, quick detection methods are now required. In essence, wavelet (WT) analysis analyses transient 

signals at various frequencies and breaks down the waveform into successive precise and approximative coefficients, which are 

vital for determining the location and kind of fault. Machine learning has traditionally been used with great effectiveness in a 

variety of defect analysis fields. The implementation of mother wavelet-detailed coefficients for fault detection and 

localization and the use of machine learning for fault location on transmission lines This paper offers a detailed explanation of 

the suggested approach for the diagnosis of system defects using an IoT-wavelet-based mechanism that was created and put 

into use in the network of the SVC integrated power system and wind energy source with a machine learning approach. 
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1. Introduction 

Transmission lines are used to move large amounts of 

power throughout the nation's most remote regions. 

Electricity lines that cross different geological zones are 

more susceptible to different forms of atmospheric disasters, 

which more commonly result in line faults. The damaged 

line must be removed as soon as feasible in order to avoid 

severe bulk power loss through the fault spot and to swiftly 

restore system stability [1]. Researchers have developed a 

number of approaches for creating enhanced power system 

protection algorithms that might be used to instantly fix 

defects when they occur [2]. This contributes to the safety of 

the associated operational staff and connected equipment, as 

well as the immediate reduction of unnecessary power waste. 

It is concluded that quicker estimation and problem detection 

offer great protection for the device while also limiting future 

harm. Unidirectional fault current flow has been used in 

traditional power system design and construction for radial 

distribution networks. However, the addition of DGs to the 

primary grid via microgrids causes a bidirectional change in 

the direction of fault current flow. A quick static switch 

connects the microgrid to the main power supply, protecting 

it from all fault types in both operating modes [3, 4]. The 

most frequently used in the wind power production business 

is the doubly fed induction generator (DFIG). Through a 

step-up transformer, the stator terminals of the DFIF are 

directly linked to the high-voltage DG bus. Two different 

types of converters make up the power electronics interface: 

a rotor-side converter and a grid-side converter. Through a 

shared DC link, both converters are cascaded together [5]. 

The grid-side converter checks the power factor and makes 

sure that it is close to unity, while the rotor-side converter 

fully manages generator operations, including controlling 

active and reactive power as well as harmonic injection. A 

static VAR compensator (SVC), which is also a member of 
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the FACTS device family, is a shunt-connected CPD that 

may supply or absorb reactive power through the active 

control of passive components using power electronics, 

thereby adjusting the voltage profile of the system. SVCs' 

accuracy, usability, and dynamic performance enable these 

components to reduce steady-state and transient voltage 

problems [6]. Through reactive power control, SVCs can be 

used to increase transient stability limits, smooth out power 

fluctuations, and reduce power losses. Since it is difficult to 

build an effective protection system that must respond to 

both main grid and microgrid faults, microgrid protection 

poses the greatest obstacles. As a result, depending on the 

microgrid operation mode, system fault current magnitudes 

may differ dramatically between grid-connected and 

autonomous operation [7, 8].  

In order to minimise cascading damage when faults 

occur, it is crucial to establish fault diagnosis processes for 

power system protection as it becomes more flexible and 

complicated. In recent years, a variety of machine-learning-

based algorithms for identifying errors have been developed 

in response to the problems that vast amounts of data have 

raised [9]. In contrast to the outdated power system, the 

expansion of data of all types, the urgent demand for data 

storage, the growing penetration of distributed generations, 

and technological advancements are currently posing 

challenges to the modern power system. There is no doubt 

that the current power system needs more reliable and 

flexible protection and control. Because of their limitations 

in generalising conventional models, storing massive 

amounts of data, and the appropriateness and efficiency of 

real-time processing, standard techniques used in power 

systems are inherently insufficient to address the difficulties.  

The assessment of IOT in the electrical power sector 

changed how things were conducted in the past. In order to 

reduce power consumption and costs, IOT expanded the use 

of wireless technologies to connect infrastructure and assets 

in the power industry [10]. SCADA, smart metering, 

building automation, the smart grid, and networked public 

lighting are a few examples of IOT applications. By 

gathering a significant amount of data with the aid of IOT for 

sensing real-time data to be transmitted, which qualifies for 

quick decision-making, it may increase system performance 

and make it more measurable and quantifiable [11, 12]. 

Fault categorization and forecasting of fault location are the 

two main duties that the protection system is capable of 

performing. primary significance in differentiating and 

locating the troublesome location. This quickly minimises 

unnecessary power loss and contributes to the protection of 

operational employees, connected equipment, or both. An 

algorithm for protecting a power system connected to a 

micro-grid is provided [13, 14] and is based on wavelet 

analysis of transient fault current data. When using the 

wavelet-detailed coefficients of the Bior-1.5 mother-wavelet, 

multi-resolution analysis (MRA) is used. Since modern 

digital relays are significantly faster and more precise than 

older prototypes, they can identify and isolate a defective line 

much earlier [15]. The parts that follow go through many 

efficient techniques for analysing the network problems of 

two area power systems using IoT-Wavelet and machine 

learning methods. 

2. Power System Network with Iot Monitoring 

Perception, network, and application layers together 

with other components comprise the three layers that secure 

transmission lines using Internet of Things (IoT) 

construction. In applications for power system protection, 

Figure 1 shows the essential architecture of the Internet of 

Things. The perception layer can utilise sensors, RFID, and 

cameras to keep an eye on the electrical equipment required 

for communication and transmit the information to the 

network layer for the safety of transmission lines [16] 

 
Fig. 1. The three-layer Architecture of Internet of Things in 

Applications for Power System Protection. 

 

The network layer includes wireless networks for 

remote data collection and fiber-optic communication lines 

for long-distance data transmission. Additionally, electrical 

data must be transferred across power line carriers. Before 

converting the security measure into a real-time system, the 

application layer gets data from several sources. The Internet 

of Things (IoT) processes, integrates, and analyses data to 

produce intelligent control services and decision-making that 

strengthen the security system. 

 
Fig. 2. IoT aided protection of transmission system. 

 

This system has several sensors that can send early 

warnings to monitoring centres concerning conductor and 

tower mechanical and physical issues as well as dangers to 

high-voltage transmission towers. The sensors have vibration 

sensors that keep track of subsurface vibrations [17]. 

According to Figure 2, the mechanical and electrical 

protection of transmission towers against the dangers of 

natural disasters, crude construction, and expanding trees is a 

component of IoT-based protection. 
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Fig. 3. Simplified machine learning framework for wide area power system Network. 

 

3. Wavelet Analysis in Power System Protection 

One of the research tools for transient fault investigation 

is the wavelet transform (WT). To classify and locate faults, 

it analyses various transitory signal types and decomposes 

the waveform into approximate and precise coefficients [18] 

using a simple mother wavelet. In [19], WT was used to 

break down fault signals into several frequency bands, and 

multiresolution analysis, or MRA, was then used for 

additional processing to create a real-time digital distance 

protection method for transmission lines. [20] presents a 

micro-grid-connected power system safety programme that 

analyses transient fault current signals using wavelet 

technology. The biorthogonal 1.5-wavelet detailed 

coefficients are utilised with multi-resolution analysis 

(MRA). 

The discrete variant of the Wavelet Transform (WT), 

known as the Discrete Wavelet Transform (DWT) technique, 

is more and more in demand for digital relaying systems. 

Many WT-based contemporary and digital fault investigation 

techniques are DWT-based [21]. Iterative processes are used 

until the required level is attained. The choice of the mother 

wavelet, which is more appropriate for fault location in 

system operation, is a challenging task [22]. The threshold 

value for the detection of defective phases that was 

established after evaluating wavelet-detailed coefficients is 

greater than the values for healthy phases and less than those 

for faulty phases. 

 

4. Machine Learning Framework for Fault 

Diagnostics 

It is based on the fault characteristic, which was 

used to build a function connecting inputs and outputs from a 

large experimental input data set. The machine learning-

based defect diagnostic procedure is broken down into four 

parts in Fig. 3: data collection, feature extraction, model 

learning, and diagnosis [23]. First, monitoring sensors 

scattered throughout the power system continuously collect 

data on vibration, noise emission, feeder status, and current. 

In feature extraction, various frequently used 

aspects of data from multiple-source monitoring devices are 

retrieved, including time-domain, frequency-domain, and 

time-frequency-domain features. In order to choose sensitive 

characteristics indicating the condition of the power system 

from the collected data, it is important to keep in mind that 

the extracted features typically contain redundant 

information and may increase the computing burden. The 

machine-learning-based diagnosis models create a 

relationship between the sensitive characteristics that are 

chosen and the outputs that show the health states of the 

equipment, which is what is meant by the term "learning," 

based on the sensitive features that are gathered [24]. Last 

but not least, based on the anticipated results of the 

fault diagnosis, the relevant protection system will 

act to disconnect problematic components in order 

to protect the remaining network. 
4.1 Machine Learning code Implementation 

The MATLAB code for the analysis of faults in the proposed 

system as follows: 

4.1.1 Input Data Initialisation 

iaZ1 =[];ibZ1=[];icZ1=[];iaZ11 =[];ibZ11=[];icZ11=[]; 

open('swami_wind.slx'); : Open the simulation file  

for km1=10:10:110         

km2=130-km1      : Sectionalising the transmission line 

for tt=0.015625:0.0009765:0.0234375: Sectionlising the time 

cycle Ts1=1/1920;       

 Ts=1/192000      : setting sampling frequency                                      
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sim('swami_wind_grk.slx');    :Simulation of test system  

4.1.2 Wave-Decomposition Of Current Signal  

[CiaZ1,LiaZ1]= wavedec(iaZ1,1,'bior 1.5'); 

[CibZ1,LibZ1] = wavedec(ibZ1,1,'bior 1.5'); 

[CicZ1,LicZ1]=wavedec(icZ1,1,'bior1.5'); 

[CiaZ11,LiaZ11]=wavedec(iaZ11,1,'bior1.5'); 

[CibZ11,LibZ11]=wavedec(ibZ11,1,'bior1.5'); 

[CicZ11,LicZ11]=wavedec(icZ11,1,'bior 1.5'); 

4.1.3 Sample Detailed-Coefficients Calculation Code 

CD1-iaZ1 = detcoef(CiaZ1,LiaZ1,1); 

CD1-ibZ1 = detcoef(CibZ1,LibZ1,1); 

CD1-icZ1 = detcoef(CicZ1,LicZ1,1);  

CD1-iaZ11 = detcoef(CiaZ11,LiaZ11,1); 

CD1-ibZ11 = detcoef(CibZ11,LibZ11,1); 

CD1-icZ11 = detcoef(CicZ11,LicZ11,1); 

4.1.4:  Calculation Of İmpact Analysis Of Faults 

Zone1-iaZ = (CD1-iaZ1-CD1-iaZ11); 

Zone1-ibZ = (CD1-ibZ1-CD1-ibZ11); 

Zone1-icZ = (CD1-icZ1-CD1-icZ11); 

4.1.5:  Test Data Generation For SVM To Find The 

Location Of Fault 

Zone1-iaZ = (CD1-iaZ1);  

Zone1-ibZ = (CD1-ibZ1); 

Zone1-icZ = (CD1-icZ1); 

4.1.6:  Preparation Of Fault İndex 

Sum1-iaZ(i)=CD1-iaZ(i)+CD1-iaZ(i+1)+CD1-

iaZ(i+2)+CD1-iaZ(i+3)+CD1-iaZ(i+4)  

 Sum1-ibZ(i)=CD1-ibZ(i)+CD1-ibZ(i+1)+CD1-

ibZ(i+2)+CD1-ibZ(i+3)+CD1-ibZ(i+4) 

 Sum1-icZ(i)=CD1-icZ(i)+CD1-icZ(i+1)+CD1-

icZ(i+2)+CD1-icZ(i+3)+CD1-icZ(i+4) 

4.1.7:   Data Visualisation 

plot (CD1-iaZ),xlabel('Time-msec'),ylabel('z1-Index-iaZ'); 

plot(CD1-ibZ),xlabel('Time-msec'),ylabel('z1-Index-ibZ'); 

plot (CD1-icZ),xlabel('Time-msec'),ylabel('z1-Index-icZ'); 

plot(x,Sum1-iaZ,x,Sum1-ibZ,x,Sum1-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

plot(x,Sum2-iaZ,x,Sum2-ibZ,x,Sum2-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

plot(x,Sum3-iaZ,x,Sum3-ibZ,x,Sum3-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

plot(x,Sum4-iaZ,x,Sum4-ibZ,x,Sum4-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

plot(x,Sum5-iaZ,x,Sum5-ibZ,x,Sum5-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

plot(x,Sum6-iaZ,x,Sum6-ibZ,x,Sum6-icZ,x,y,'--k'), 

xlabel('T-msec'),ylabel('Flt-Index'); 

4.1.8 Data Extraction For İmplementing SVM 

xlswrite('zone4\Pv-hvdc-Z4-AG',Indx-a1-11,'Zone1-a') 

xlswrite('zone4\Pv-hvdc-Z4-AG',Indx-b1-11,'Zone1-b') 

xlswrite('zone4\Pv-hvdc-Z4-AG',Indx-c1-11,'Zone1-c') 

5.  System Analysis and Methodologies 

Two utility grids, two 100 MW wind turbines, a static 

variance controller (SVC) with a number of different 

distance zones, and a 230 kV transmission system make up 

the test system shown in figure 4. The system's 290 km total 

transmission line length is made up of six zones. There are 

10 faults overall in each zone, changing in distance in 

increments of 10. The proposed scheme parameters are 

specified in Table 1. 

 

 
 

Fig. 4. Scheduled mechanism to test the two-area power 

network. 

 

Table 1. Technical Parameters of Proposed System 

 

After choosing an appropriate wavelet, the zone current 

signal, which samples at a rate of 264 kHz from Z1 to Z6, is 

then used to evaluate the data during the failure. 

6. Simulation Results 

The two-area network simulation model with wind 

integrated energy sources was created using the 

MATLAB/Simulink software. The exploration of the system 

is studied at distinct faults that are generated and tested with 

interactive programming with synchronisation of the 

simulation model illustrated in Figure 5. 

Every zone of the 10 different sorts of defects is 
considered when analysing the fault cases. The whole 

transmission line distance (from 0 km to 290 km) is divided 

into 6 zones, with zones 1 and 6 being 10 km and 25 km, 

respectively, and zones 2 and 4 being 110 km. The 

transmission line fault in Zones 3 and 4 varies the line length 

by increments of 10 km and the angle of fault initiation (from 

00 to 1800 in increments of 150). The transmission line's 

Zone-4 waveform displays higher values as compared to 

other indices, which indicates the LG fault in Zone-4 as 

shown in Figure 6. 
 

 

1&3 

Terminals 
Utility Grid, 230KV  

2&4 

Terminals 
Wind Energy source, 100 MWP 

Line 

parameters 

R=0.01273 Ω/Km, R0 = 0.3864Ω/Km 

L=0.9337e-3H/Km, L0=4.1264e-3H/Km 

C=12.74e-9 F/km, C0 = 7.751e-9 F/km 

SVC  

Rating: 300-Mvar, Coupling transformer: 

230kV/16-kV,333-MVA TCR: One 109-

Mvar, TSC: Three 94-Mvar  
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Fig.5. Simulation Diagram for SVC Compensated wide area network in presence of Wind Energy Source. 

 

 
 

 
 

Fig. 6. prediction of Fault Zone in the proposed system.. 

 

(a) Current               (b) wavelet coefficients                              (c) Fault Index 

Fig. 7. Analysis of SLG Fault at zone-4 on Wind Energy Source Integrated Grid network. 

 
(a) Wind Source 

 
(b) Wind-SVC Integration  

Fig.8. Calibrated impact analysis of SVC for prposed network using Indices of zone-4 current signals . 
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Based on the prediction of an SLG fault at zone-1 using the 

current waveform,Wavelet coefficients  and fault index in the 

Wind and SVC integrated network, the issue is identified as a 

ground fault on phase-A.Fault indices for three-phase current 

signal comparison with healthy phase current signals are 

derived. Figures 7 illustrate how wavelet-detailed 

coefficients and time quantum analysis of single line-to-

ground faults can be utilised to understand how faults affect 

certain phases. Phase A has a much larger fault index than 

the other phases, as can be seen. As a result, locating the 

problematic stage is easy. 

To find the fault, it takes extra time quantum to compare the 

current signal to the fault index. It is clear that from 40ms to 

under 20ms, the time needed for fault identification has 

decreased. By getting the fault indices of three phase current 

signals and comparing them to other phase indices, the fault 

less than half cycle is identified. 

Table 2. Fault analysis at various distances in Zone-4 of Area-2 of test system with the integration of SVC with Wind energy 

source.  

Wind Energy Source Integrated Network SVC-Wind Energy Source Integrated Network 

 

Zone4_index_IA Zone4_index_IA 

D
istan

ce in
 K

m
 

FIA 0 30 60 90 120 0 30 60 90 120 

10 1240.4 1571.9 1482.1 1273.1 1234.5 1403.8 1754.7 1521.6 1242.2 1344.2 

20 1350.7 1661.2 1390.7 1182.4 1177.7 1379.6 1704.8 1413.5 1155.1 1257.2 

30 1292.5 1568.6 1370.8 1170.0 1172.9 1287.7 1596.3 1373.1 1118.7 1213.3 

40 1352.6 1540.8 1328.7 1184.7 1198.7 1331.8 1586.7 1377.4 1173.6 1222.5 

50 1197.0 1478.6 1394.0 1204.3 1198.7 1175.3 1522.6 1405.4 1170.0 1211.0 

60 1220.7 1436.2 1324.9 1186.8 1174.4 1230.3 1529.5 1372.9 1172.8 1234.2 

70 1419.5 1534.3 1330.0 1114.7 1096.6 1388.8 1574.2 1304.5 1082.9 1111.4 

80 1458.3 1608.1 1451.3 1194.3 1194.3 1469.6 1681.7 1451.1 1161.4 1173.3 

90 1272.6 1818.0 1555.3 1253.9 1013.9 1331.2 1810.6 1518.2 1219.8 1232.1 

100 1593.2 1798.4 1528.0 1169.7 917.8 1554.1 1822.5 1538.3 1158.0 1158.9  

Zone4_index_IB Zone4_index_IB 

D
istan

ce in
 K

M
 

FIA 0 30 60 90 120 0 30 60 90 120 

10 254.85 142.10 138.18 171.77 158.45 244.92 258.80 172.40 173.43 210.37 

20 161.49 151.37 150.70 149.90 174.26 245.00 215.27 197.84 187.59 210.33 

30 186.83 141.86 136.23 163.10 171.68 294.31 240.62 153.66 163.24 137.28 

40 168.59 136.78 224.33 203.77 194.88 171.22 129.11 141.58 150.02 111.39 

50 219.13 208.74 167.25 117.57 79.91 260.45 227.68 168.17 167.96 114.07 

60 234.64 222.76 178.04 133.53 107.19 372.08 306.77 260.54 194.17 139.25 

70 165.55 119.34 164.45 203.86 211.20 173.20 144.02 168.57 186.84 127.46 

80 278.93 179.17 211.49 236.58 213.75 249.92 193.67 230.05 231.44 140.01 

90 124.96 88.15 185.06 206.45 221.25 155.76 127.48 172.74 153.67 128.63 

100 237.05 190.73 105.57 153.17 216.36 211.96 160.93 105.66 189.10 198.00 

 Zone4_index_IC Zone4_index_IC 

D
istan

ce in
 K

M
 

FIA 0 30 60 90 120 0 30 60 90 120 

10 251.99 219.77 194.59 138.43 153.24 265.34 201.66 168.34 177.48 185.39 

20 205.47 144.34 110.91 150.38 140.90 286.45 160.62 162.58 151.86 125.15 

30 188.93 164.77 182.11 176.70 180.97 379.59 217.55 183.17 168.53 134.83 

40 215.87 168.81 149.56 168.21 177.76 382.59 300.11 220.97 196.59 171.99 

50 210.88 146.57 102.67 103.93 118.42 250.32 178.76 180.96 160.67 179.62 

60 271.85 194.65 122.35 93.81 109.43 215.01 230.45 202.01 197.62 119.17 

70 339.86 217.47 202.12 222.02 158.75 312.36 208.83 186.52 158.10 137.46 

80 203.88 96.52 134.68 129.90 108.55 251.85 232.99 184.46 186.22 182.25 

90 339.15 242.79 155.79 149.16 140.61 245.41 205.97 122.81 192.65 196.73 

100 161.57 226.98 244.82 198.66 168.25 184.79 253.10 235.63 196.14 206.28 
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The impact of SVC integration has been calibrated with the 

help of the fault index, which represents the variation of fault 

at different distances as represented by Figures 7 and 8. The 

fault index If the number of faulty phases varies according to 

the type of fault, however, its value remains greater than 

Threshold Th1. The fault index for healthy phases remains 

below the threshold value. The flaw becomes more obvious 

over a shorter period, according to the sum of the precise 

coefficients for the Zone-4 current signal. At the moment of 

the fault, different distances are shown in figure 9, and the 

impact analysis of SVC is calibrated as shown in figure 10. 

Tables 2 display fault initiation angles for particular phase 

currents and Zone 4 wavelet-based fault indices at varying 

distances. Because all the Phase-A current fault indices are 

greater than the values of the other phase currents, the fault is 

Phase-A to ground.The proposed machine learning algorithm 

has been tested for 2160 fault simulations using MATLAB, 

and the threshold values Th1 have been fixed based on 2160 

simulations involving variations in location, fault incidence 

angle, and fault impedance for various types of faults. 

 

 

 

         
                         Distance in Km     Distance in Km 

Fig. 9. Svc impact on fault at various distances using SVM learning analysis  

        
Fig. 10. SVC impact on fault at various Fault Initiation angles using SVM learning analysis. 

6. Conclusions 

This study advises monitoring the transmission system with 

the use of the Internet of Things (IoT) and its applications in 

order to establish powerful protective systems. IoT may 

successfully address practical mechanical and physical 

problems while fostering the development of fresh security 

measures. WT is one of the research strategies used to assess 

flaws in transient signals at various frequencies by dissecting 

the waveform into the ensuing exact and approximative 

coefficients. These coefficients offer crucial details regarding 

the type of defect and where it is in the current system in 

terms of time and frequency. New difficulties are being 

presented to traditional power system protection strategies by 

newer generation sources and loads. The solution to these 

problems is determined to be an adaptive and intelligent 

protection approach based on sophisticated measurement 

techniques and intelligent fault detection, such as machine 

learning. The recommended method has been tested using 

the IOT application for the detection and discrimination of 

faults under various fault types at various fault inception 

angles using Bios 1.5 mother wavelets with detailed 

coefficients through the MRA Technique. 
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