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Abstract- This paper proposes an approach based on artificial neural networks (ANN) to control a grid-connected photovoltaic 

system (PVS) under partial shading (PS) conditions. In PS conditions, the P-V curve exhibits multiple peaks, with only one 

representing the global maximum power point (GMPP), and the others representing local maximum power points (LMPP). 

Traditional Maximum Power Point Tracking (MPPT) methods are unable to identify the GMPP and get stuck around an LMPP, 

which results in reduced productivity of the PVS. The proposed approach combines supervised learning (SL) and deep 

reinforcement learning (DRL) techniques to design a controller with a hierarchical structure that can overcome the problem of 

identifying the GMPP in PVSs under PS conditions. The PVS under study consists of four identical solar panels. At the first 

control level, each solar panel has a sub-controller designed using ANN and the SL technique, which determines the appropriate 

duty cycle to extract the maximum power from the solar panel based on real-time weather conditions. At the second level, a DRL 

agent identifies the optimal duty cycle for the DC/DC converter from the duty cycles generated by the sub-controllers. The Deep 

Deterministic Policy Gradient (DDPG) and Twin Delayed DDPG (TD3) agents are implemented and evaluated for the second 

level of control. Simulation results using MATLAB/Simulink demonstrate the effectiveness of the proposed controller in tracking 

the GMPP. 

Keywords photovoltaic source; Maximum Power Point Tracking; partial shading conditions; global maximum power point; 

artificial neural networks. 

 

1. Introduction 

Improving energy productivity and quality are the main 

challenges faced by photovoltaic systems in overcoming the 

high cost of installing this form of renewable energy [1, 2]. To 

meet this challenge, the research focuses on two main 

orientations. The first is related to photovoltaic cell 

technology [3, 4, 5] and the second is concerned with the 

control system of these photovoltaic panels [6, 7]. With the 

growth of PV installations, the impact of partial shading (PS), 

which is caused by several factors such as clouds, buildings, 

trees, and snow, represents a problem that significantly affects 

the productivity of photovoltaic systems and is, therefore, an 

important research topic. Indeed, traditional MPPT 

techniques, such as the perturbation and observation (PO) 

algorithm and the incremental conductance (IC) algorithm, are 

inefficient when the photovoltaic system (PVS) is composed 

of several solar panels and subjected to a partial shading 

condition. This weather situation unbalances the amount of 

solar irradiation captured by the different solar panels, and the 

MPPT controller is unable to track the true maximum power 

point. This limitation arises due to the presence of multiple 

local maximum power points (LMPPs) on the P-V curve, 

which makes it difficult for the traditional MPPT algorithm to 

determine the global maximum power point (GMPP). As a 

result, the algorithm gets stuck around an LMPP [8, 9].            

The optimization of control strategies for PVSs to reduce 

energy losses resulting from PS conditions is a crucial area of 
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research in the solar energy field [10]. Various approaches 

have been proposed to mitigate the effects of PS, and among 

these, evolutionary algorithms have gained significant 

attention as an effective means of addressing power loss 

problems related to the PV effect and optimizing electrical 

energy production in PV systems [11,12]. As a result, 

researchers have been actively exploring and adapting this 

optimization approach to the control context of PVSs. This 

research has led to a surge in investigations aimed at 

advancing the development of novel control strategies that 

integrate evolutionary algorithms to improve the energy 

productivity and quality of PV systems in the presence of 

partial shading.  

Indeed, in [13], the authors adopted the particle swarm 

optimization (PSO) algorithm to control a PVS under different 

weather conditions, including scenarios of PS. Nevertheless, 

the authors did not evaluate the accuracy of their PSO 

algorithm in tracking the GMPP, which is an important 

performance criterion for controlling PVS. This criterion 

highlights a weakness of most evolutionary algorithms. In the 

works [14, 15, 16], the authors are more interested in control 

performance, specifically the accuracy of tracking the global 

maximum power point (GMPP), by evaluating improved 

algorithms based on particle swarm optimization (PSO), grey 

wolf optimization (GWO), and Cat Swarm Optimization 

(CSO) metaheuristics, respectively. In [17], the authors 

combined the artificial bee colony (ABC) algorithm with the 

traditional perturb and observe (PO) method, aiming to 

improve the responsiveness and accuracy of tracking the 

GMPP. In [18], the use of the genetic algorithm (GA) 

combined with a backstepping controller yields better control 

performance.  

These works [13-18], which propose improved solutions 

based on metaheuristics, have a critical drawback in terms of 

implementation in a real system. Indeed, the application of 

metaheuristics requires high computation time, and improving 

these algorithms increases their complexity and execution 

time. Additionally, the input variables are of an electrical 

nature characterized by rapid fluctuations that disturb and 

destabilize the operation of the controller based on these 

metaheuristics. In conclusion, the proposed solutions are 

hardly applicable to real PVSs. 

Researchers have addressed the limitation of 

metaheuristic algorithms by using artificial neural networks 

(ANN), which can take in slow and smooth climatic variables 

as inputs for improved control stability of photovoltaic 

systems. Multiple studies, including [19] and [20], have 

validated the effectiveness of this approach in enhancing 

control performance. Nevertheless, some studies use an ANN 

with reduced structure to control PVSs by acquiring electrical 

variables [21]. Moreover, the authors [21] are obliged to 

combine the neural network with a conventional PO algorithm 

to guarantee an optimal performance. The studies [19, 20, 21] 

use supervised learning (SL) for ANN controller synthesis. 

This learning technique is insufficient in the case of partial 

shading condition, unlike deep reinforcement learning (DRL) 

which was adopted in [22, 23]. However, the DRL algorithm 

requires a large amount of training data with very fine tuning 

to obtain a valid control model under all weather conditions. 

In [22], the DRL agents are learned over 30000 episodes and 

require excessive time. Moreover, in [22], the solution is 

implemented on openAI Gym, which is not suitable for the 

complex dynamic system. The authors [22] proposed an 

analytically valid solution, but it does not take into account the 

internal dynamics of the PV system. It would be better to 

validate this solution on MATLAB/Simulink using the 

Simscape library to have a model closer to reality. In [23], the 

authors even combined DRL with fuzzy logic to increase the 

learning rate and reduce the training time. 

Currently, consistent research work on the control of 

PVSs under SP conditions using DRL is too few, although this 

approach is very attractive since the synthesis of the control 

model does not require knowledge of the PVS model. Our 

proposal is to combine the benefits of SL with the performance 

of DRL to design a controller that can track the GMPP in any 

weather condition and can be implemented in a real PVS. 

Indeed, this paper proposes a novel approach that integrates 

supervised learning with deep reinforcement learning to 

effectively eliminate the issue of power loss in PVSs caused 

by PS conditions, which result in reduced productivity.  

The proposed approach empowers the design of a 

hierarchical controller (ANN-RL controller) with the ability to 

accurately track the GMPP in real-time. The proposed 

hierarchical controller represents a significant advancement in 

PVS control by effectively addressing the issue of power loss 

due to PS. Through its ability to efficiently adapt to changing 

environmental conditions and optimize energy production. 

The ANN-RL controller is structured hierarchically and 

includes multiple ANN sub-controllers developed through SL, 

as well as a main controller developed through DRL. Each 

sub-controller receives weather data from an individual solar 

panel and determines the optimal duty cycle. After being 

generated by the ANN sub-controllers, the duty cycles are sent 

to the main controller to determine the optimal duty cycle for 

the entire PV system that aligns with the GMPP. The 

effectiveness of the main controller is evaluated using the 

Deep Deterministic Policy Gradient (DDPG) agent and the 

Twin Delayed DDPG (TD3) agent. 

The paper is divided into five sections. The first section 

presents the PVS model. The second section details the 

implementation of the PO method and its limitations. The third 

section presents the design approach of the proposed ANN-

RL controller, and simulation results are provided to 

demonstrate its effectiveness. The paper concludes with a 

summary of its contributions. 

2. Presentation of the studied photovoltaic system 

The studied system, which is a grid-connected PVS, 

consists of a photovoltaic array with four solar panels, a DC-

DC boost converter, and a DC-AC inverter [24, 25]. This 

power conversion chain is interfaced with the electrical grid 

using a filtering system and a transformer, as shown in Fig. 1. 

The PVS is driven by a MPPT controller and a Voltage Source 

Converter (VSC) controller that control the DC-DC converter 

and the DC-AC converter, respectively. The essential modules 

of the grid connected PVS, which are implemented using 

MATLAB/Simulink, will be detailed in the following 

paragraph. 
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Fig. 1. Grid-Connected PVS. 

Where PG1 and PG2 are both pulse width modulation 

(PWM) signal generators which control respectively the DC-

DC Boost converter and the AC-DC inverter.   

2.1. Structure of the photovoltaic cell array 

The photovoltaic array is composed of two series of 

SunPower SPR-E18-295-COM reference panels connected in 

parallel, where each series is composed of two panels, as 

shown in Fig. 2. The maximum power output of the four 

modules is 120 kW. The capacitors C11, C12, C21, and C22 

have identical values of 400 µF. 

 

Fig. 2. The connection of the four solar panels. 

Each PV panel consist of 34 parallel strings made up of 

three modules connected in series. The maximum power of the 

PV panel is 30 kW. 

2.2. The DC-DC boost converter 

The DC-DC boost converter, as illustrated in Fig. 3, 

controls the power generated by the PVS and provides an 

output voltage whose magnitude is greater than the input 

voltage [25, 26]. To activate the DC-DC boost converter, the 

duty cycle DDC is converted into a PWM signal with a 

frequency of 5 kHz using a PG1 generator.  

 

Fig. 3. DC-DC Boost Converter 

Where the Input capacitor Cbi=200 µF, the inductor 

Lb0=10 mH and the output capacitor Cbo=1200 µF. 

2.3. VSC controller setting for DC-AC inverter 

The DC-AC inverter operates with a VSC controller to 

convert 500 V DC to 260 V AC while maintaining a constant 

power factor of 1. The VSC controller is composed of four 

modules [26 ,27]. The first module determines the value of the 

reference current Iref
d  using the following equation: 

Iref
d = kv

p
(Vmes

DC − Vref
DC) + kv

i ∫(Vmes
DC − Vref

DC)dt           (1)                                                  

Where kv
p

= 7 and kv
i = 800. 

The second module is a phase-locked loop (PLL) that 

detects the phase angle of the grid and synchronizes it with the 

grid voltage. The three phase voltages measured on the grid 

side are the inputs to the PLL model, and the output is the 

phase angle. The phase angle is used in the Park 

transformation. The third module is a Feed Forward Current 

Controller which generates the voltages Vconv
d  and Vconv

q
 

according to the following equations: 

Vconv
d = ud − LωIref

q
+ RIref

d + Vmes
d                             (2)                                                                

Vconv
q

= uq − LωIref
d + RIref

q
+ Vmes

q
                            (3)                                                  

ud = ki
p

(Iref
d − Imes

d ) + ki
i ∫(Iref

d − Imes
d )dt                 (4)                                                 

uq = ki
p

(Iref
q

− Imes
q

) + ki
i ∫(Iref

q
− Imes

q
)dt                 (5)                                                 

Where ki
p

= 0.3, ki
i = 20, L = 0.25 mH and R = 2 mΩ 

The fourth module performs the inverse Park 

transformation and generates the reference voltage Uref. 

3. Control of the PVS by the traditional MPPT 

technique 

The MPPT controller operates a DC-DC converter that is 

connected to 4 solar panels operating under identical ambient 

temperature At and uniform solar irradiation Sr with a single 

point of maximum power. The multiple maximum power 

points in the PV characteristic are caused by the partial 
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shading of one or more panels. In partial shading conditions, 

the shaded panels absorb less sunlight, generating less current, 

and consequently reducing the power generated by the panel. 

This causes a mismatch between panels, leading to multiple 

maximum power points in the P-V characteristic. In this case, 

the traditional MPPT controller will be unable to identify the 

GMPP and will be trapped in an LMPP. If photovoltaic panels 

of different age and technology are connected in series, the PS 

phenomenon will be present constantly. 

The first section of this paragraph describes the design of 

the traditional MPPT controller, which is based on the perturb 

and observe (PO) method [28]. This control technique's 

performance in tracking the maximum power point is 

evaluated in this section. In the second section, the limitations 

of the traditional PO method are presented under partial 

shading (PS) conditions [29] 

3.1. Performance of traditional PO method 

The diagram illustrating the PO method used to control the 

power generated by the PVS is shown in Fig. 4. 

 

Fig. 4. Diagram of the PO algorithm 

When all four solar panels are subjected to the same 

climatic conditions, the values of S1
r, S2

r , S3
r , S4

r  and A1
t , A2

t ,
A3

t , A4
t  are equal to Sr and At respectively. The results of the 

simulation for different levels of solar radiation and 

temperature are illustrated in Figures 5 and 6. The unit of time 

used in all figures depicting the simulation results is hours (h). 

This evolution scenario of climatic variables exhibits 

several levels of variation. For instance, at t=1h, there is a 

small increase in solar irradiation of 100 W/m². At t=2h, the 

increase in solar irradiation is of an average value of 200 

W/m², and at t=3h, the increase is significant with a value of 

500 W/m². Similarly, in the case of a decrease in solar 

irradiation, two levels of variation of 200 W/m² at t=6h and 

500 W/m² at t=8.5h are observed. The At temperature 

evolution also displays multiple levels of temperature with 

various increases and decreases. Figure 7 illustrates the power 

supplied to the grid for different levels of climatic variables. 

 

Fig. 5. Evolution of the solar irradiation Sr. 

 

Fig. 6. Evolution of the ambient temperature At. 

 

Fig. 7. Power supplied to the grid. 

To assess the performance of the system, the maximum 

power point (MPP) is determined from the P-V curves of the 

photovoltaic system (PVS) for every level of solar irradiation 

Sr and ambient temperature At, as depicted in Figure 8. The 

gap between the transmitted power and the MPP, which 

reflects the accuracy of the MPPT controller using the PO 

method, is given by the following formula: 

GAP(%) =
MPP− Pt

MPP
100                                                      (6) 
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 Fig. 8. P-V curves for different levels of Sr and At 

Figure 9 illustrates the GAP (%) value over each time interval. 

 

Fig. 9. Error rate of the PO algorithm. 

The average gap between the MPP and the generated 

power is 1.95%. In the analysed case, the PO algorithm can 

identify and tracking the MPP with an efficiency of 98.05%. 

The P-V curve consistently exhibits a single GMPP. It has 

been observed that solar irradiation has a greater impact on the 

generated power than temperature. The subsequent analysis 

primarily focuses on evaluating the effect of changes in 

irradiation on the performance of the PO method. 

3.2. Limitation of traditional methods in the case of partial 

shading conditions 

In scenarios where the level of solar irradiation varies 

among panels, the P-V curve may display two points of 

maximum power. The higher one is called the GMPP, and the 

other is referred to as the LMPP. Let us consider a specific 

climatic situation (SC1), defined as follows: S1
r = S3

r =1000 

W/m², S2
r=300 W/m², S4

r=500 W/m² and A1
t = A2

t = A3
t =

A4
t = At =25°C. Figure 11 illustrates that there are two 

maximum power points in this case. The first, which is the 

GMPP, corresponds to VPV = 169.944 V for Pt=59220.5W, 

and the second, which is the LMPP, corresponds to VPV =
355.997 V  for Pt=51093.7 W. The power difference between 

the two points is ∆P=8126.8 W. 

To assess the effectiveness of the traditional PO control 

method, a scenario involving variations in solar irradiance, as 

illustrated in Fig. 10, is considered. The PVS is initially placed 

under SC1 conditions, which correspond to the P-V 

characteristics depicted in Fig. 11, for a duration of 2 hours. 

Following this, the PVS is exposed to changes in irradiance 

levels for 6 hours before returning to the original SC1 climatic 

conditions, which are maintained for an additional 2 hours. 

Figure 12 illustrates that the PVS produces a derived power of 

57.93 kW under partial shading conditions corresponding to 

SC1. This power output is near the GMPP point, which equals 

59.22 kW. The system reaches this point due to a specific 

initialization of the duty cycle value in the PO algorithm, 

which is set at 0.75. However, following an irradiance change, 

the PO controller is unable to identify the GMPP again and 

becomes trapped around the LMPP, resulting in a transmitted 

power of 50.03 kW. 

 

Fig. 10. Variations of solar irradiation for each photovoltaic 

panel 
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Fig. 11. P-V curve under partial shading condition 

 

Fig. 12. Evolution of the transmitted power to the grid using PO method. 

4. Proposed approach for the control of a PVS using 

ANNs 

The proposed approach involves a two-level controller 

structure, as shown in Fig.13. At the first level, a local ANN 

sub-controller is directly connected to a single solar panel. The 

ANN sub-controller, which is implemented using supervised 

learning techniques, generates the duty cycle based on the 

climatic conditions of the individual solar panel. At the second 

level, the main controller, developed using Deep 

Reinforcement Learning (DRL), receives duty cycles from the 

various ANN sub-controllers and determines the optimal duty 

cycle, Dopt
DC . 

It should be noted that the duty cycle values, cycles D1
DC, 

D2
DC, D3

DC and D4
DC, generated by the ANNs must be highly 

accurate to enable the RL agent to identify the optimal duty 

cycle. To address this challenge, a careful approach is 

employed in the design of the ANN sub-controller, which is 

described in the following paragraph. 

 

Fig. 13. Structure of the proposed ANN-RL controller  
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4.1. Design of the ANN sub-controller using supervised 

learning 

The PO controller relies on acquiring and interpreting 

internal electrical variables VPV and IPV, which are influenced 

by the dynamics of various elements within the PVS. The 

design of the ANN sub-controller aims to replicate the 

dynamic behavior of the PO controller using the two climate 

variables, Sr and At, as inputs. The position of the maximum 

power is suitably tracked by the weather variables SSr and At, 

without any disturbance. To achieve this, a well-thought-out 

approach is employed, covering the entire operating space 

(OS) of the solar panel and generating the duty cycle Dj,k
DC for 

each value of Sr and At using the PO algorithm [19].  

The synthesis of the ANN sub-controller involves 

defining a set of equilibrium points (EP) within the OS of the 

PVS. These EPs serve as a basis for training the ANN sub-

controller. To ensure the accuracy and robustness of this first 

level of control [19], a uniform distribution of EPs throughout 

the OS is proposed, as illustrated in Fig. 14. 

 

Fig. 14. Uniform distribution of the equilibrium points. 

Solar irradiance Sr and temperature Atare used as inputs 

into the ANN sub-controller to determine the output duty 

cycle DDC. The equilibrium point is defined by the triplet (Sr, 

At, DDC). The PVS operating space must be covered by all 

these EPs. The OS for Sr is ΩS = [Smin
r ; SMax

r ] and for At is 

ΩA = [Amin
t ; AMax

t ]. Then, for each Sj
r ϵ ΩS and Ak

t  ϵ ΩA the 

duty cycle Dj,k
DC.With j∈ [1; N] and k∈ [1; M]. The OS for DDC 

is ΩS.ΩA. The total number of EP is P=MxN.  In the synthesis 

of a supervised learning controller, it is necessary to determine 

beforehand the optimal value of DDC for each pair (Sr and At).  

This optimal value of DDC allows to generate the maximum 

power of the attached PVS. The optimal DDC value is 

identified using a conventional MPPT algorithm. The model 

of the PVS controlled by the PO method will be used to 

generate the training data for the ANN sub-controller. The 

training data generation algorithm is illustrated in Fig. 15. 

 

Fig. 15. Diagram of the training data generation algorithm 

Where Amin
t = 0, AMax

t = 50, Smin
r = 200, SMax

r = 1000, 

N=10 and M=40.  

The proposed ANN sub-controller is structured on three 

layers: an input layer with two acquisition neurons, a hidden 

layer of ten neurons that mix the acquired climate variables Sr 

and At, and an output layer with a single artificial neuron that 

delivers the value of the duty cycle. The ANN sub-controller 

is trained using the MATLAB software application "Neural 

Net Fitting". Of the 400 equilibrium points, 72% will be used 

for training, and the remaining 28% will be divided equally 

for testing and validation. 

4.2. Design of the RL main controller using deep 

reinforcement learning 

Deep reinforcement learning is a technique to design a 

control policy without prior knowledge of the dynamic 

behavior of the system. This approach is based on the 

interaction of an agent with its environment [31, 32]. The 

agent chooses an action based on its observations and rewards 

to update its policy settings during learning. A DRL algorithm 

will then try to maximize the total reward received by the 

agent. In the literature, there are several DRL algorithms, such 

as SARSA, DQN, PPO, TD3 and DDPG [33, 34]. In this 

context, we proceed to the exploitation of DRL for the main 

control of a PVS. The problem is to identify the optimal duty 
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cycle Dopt
DC  that follows the GMPP. Figure 16 illustrates the 

integration of the agent in the environment.  

 

Fig. 16. Training model of the RL Agent 

The training of the RL agent is carried out through an 

iterative process with the aim of optimizing the power output 

of the PVS. The climatic condition is defined by two vectors 

ZS = [S1
r , S2

r , S3
r , S4

r ] and ZT = [A1
t , A2

t , A3
t , A4

t ]. Each pair of 

climate data (Si
r, Ai

t) are processed by the ANNi sub-controller, 

as detailed in the previous Fig. 14, to generate the duty cycle 

D𝑖
DC with i=1,2,3 and 4. The observation data of the agent RL 

is defined by the vector ZD = [D1
DC, D2

DC, D3
DC, D4

DC]. 

The design of a controller based on an ANN requires an 

essential learning phase, which is validated by satisfying a set 

of performance criteria. In the case of DRL, the learning phase 

involves conducting a set of experiments. Due to the strong 

influence of irradiation on the power output of PVS with 

respect to ambient temperature, we propose a uniform 

distribution of irradiation, as shown in Algorithm 1 below. 

The temperatures are defined randomly. 

 

The function random(5,50) returns a random value between 5 

and 50. L represents the number of solar irradiance levels, 

which is equal to 6. The total number of solar irradiance 

combinations is 64 =1296. The reward function, proportional 

to the PPV power value, is expressed as R = αPPV − β, where 

α =  10−4 and β = 10. The learning process is carried out for 

both the TD3 and DDGP agents. It should be noted that the 

reward value is proportional to the power generated by the 

PVS. 

Figures 17 and 18 depict the results of the training process for 

the TD3 and DDGP agents, respectively, displaying the 

reward value obtained for each episode. An increase in this 

value indicates that the RL agent is approaching the optimal 

duty cycle and generating more power from the PVS. 

 

Fig. 17. Evolution of the reward value during the training of 

the TD3 agent. 

The TD3 agent quickly identified the optimal duty cycle 

for power generation within the first 200 episodes and 

continued to improve it. Its learning process was completed in 

less than 1000 episodes. These results demonstrate the success 

of the proposed approach for designing the two-level 

controller. The learning process of the DDGP agent is 

conducted for 1000 episodes, the same number as for the TD3 

agent. 

 

Fig. 18. Evolution of the reward value during the training of 

the DDGP agent. 

The behaviour of the TD3 and DDGP agents during the 

learning process was assessed by visualizing the reward value 
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obtained in each experiment, as shown in Fig. 17 and Fig.18. 

The TD3 agent exhibited a rapid improvement in its strategy 

after exploring the environment, whereas the DDGP agent 

failed to converge to an optimal strategy and remained in a 

state of environment exploitation. This demonstrates the 

advantage of TD3 in efficiently adapting its policy to the 

environment and achieving better performance in learning 

tasks compared to DDGP. 

Figure 19 and Figure 20, shows respectively the simulation 

results of 6 experiments performed by the DDGP agent and 

the TD3 agent. 

 

Fig. 19. Reward value for the DDGP trained agent. 

 

Fig. 20. Reward value for the TD3 trained agent. 

Table 1 summarizes the maximum, minimum, and average 

reward values obtained by the TD3 and DDGP agents across 

six experiments. 

Table 1. Synthesis of the rewards obtained for the TD3 and 

DDPG agents. 

 DDGP 

Agent 

TD3 

Agent 

Average reward value 422.766 434.77 

Maximum reward value 435.845 443.845 

Minimum reward value 407.615 427.335 

 

The TD3 agent achieved a higher reward value and better 

performance in tracking the GMPP compared to the DDGP 

agent. Therefore, in the following evaluation of the simulation 

results of the PVS under PS condition, the TD3 agent was used 

as the main controller. 

4.3. Simulation result and discussion performance of the 

proposed controller 

The following section presents the simulation results of 

the power transmitted to the power grid using the ANN-RL 

controller. Thus, a comparative study is conducted with the 

traditional PO controller. The result of simulation, for the two 

studied controllers, is given by Fig. 21. 

Based on the results presented in Fig. 21, the power 

generated by the PVS for both controllers are averaged over a 

10-hour simulation period. Table 2 shows the average power 

produced by the PVS when using the conventional PO 

controller and the proposed new ANN-RL controller, and the 

corresponding power gain achieved. 

 

 

 

 

 Fig. 21. Transmitted power using the ANN-RL controller and using the PO method. 
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Table 2: Average power output for each controller and power 

gain obtained. 

Average power produced using the 

conventional PO controller 
74.68 kW 

Average power produced using the 

proposed new ANN-RL controller 
67.51 kW 

Power gain achieved 10.62 % 

 

The average value of the transmitted power using the 

proposed ANN-RL controller is equal to 74.68 kW against 

67.51 kW using the PO method. Therefore, the ANN-RL 

controller increases the power generated by the PVS by 

10.62% {
74.68−67.51

67.51
∗ 100 = 10.62%} compared to the 

conventional PO controller. This is the minimum gain that can 

be achieved since the PO controller is well initialized at the 

start of the algorithm. Analytically, the maximum power 

under the studied PS condition is equal to 59.22 kW and the 

power generated by the ANN-RL controller is equal to 57.93 

kW. The deviation from the maximum power value is 2.17 % 

which is a small and acceptable deviation even in a uniform 

shading condition.  

In addition, the learning process of the main controller 

agent is significantly reduced to only 1000 episodes, providing 

evidence that the ANN sub-controllers effectively simplified 

the main controller's task. The integration of SL with DRL 

eliminates the complexities that arise from implementing DRL 

for PV system control under partial shading conditions. This 

promising combination opens new opportunities to apply this 

approach in various domains of electrical system control. 

5. Conclusion 

In this paper, a robust controller that combines SL with DRL 

is proposed to address the PS problem in a grid-connected 

PVS composed of four solar panels. The proposed ANN-RL 

controller is composed of a set of sub-controllers developed 

using SL and a main controller implemented using DRL. The 

comparative study reveals that the TD3 agent outperforms the 

DDGP agent in tracking the maximum power point during the 

development of the main controller. Unlike the traditional 

MPPT controller, the proposed ANN-RL controller can detect 

the GMPP of a PVS under PS conditions, resulting in a 

significant increase in energy production. Specifically, for the 

case study presented in this paper, the gain is at least 10%, 

which validates the integration of ANN approaches for PVS 

control. Ultimately, the combination of supervised learning 

and reinforcement learning simplifies controller design and 

implementation, while also presenting potential opportunities 

for enhancing the efficacy of control systems across diverse 

industrial settings. 
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