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Abstract- This paper presents a new sustainable operation method for running the power system of a disaster base hospital 

without the use of an energy storage device. There is a diesel generator for islanded operation in the hospitals in the event of a 

disaster, but it keeps emptying due to the issue that the fuel stored in the tank deteriorates. In consequence, diesel generators fail 

to start up and medical services cannot be kept. To prevent fuel deterioration, it is deemed necessary to refuel the tank with 

occasional use of fuel. Even in hospitals, installing backup power systems like photovoltaics is a common way to reduce energy 

use. In such hospitals, there is a demand to combine diesel generators and photovoltaics to respond a demand side response. 

Since it is challenging to operate a complicated system of diesel generators and photovoltaics, it is necessary to install more 

energy storage system. But several hospitals do not want to install it because energy storage system is so pricey. This paper 

proposes a method that can correspond demand side response as a virtual power plant in a power grid without an energy storage 

system to improve the operational issues of a complex combination of diesel generators and photovoltaics. It requires a load 

prediction first. The prediction method is the load one step ahead prediction and providing the optimized output distribution and 

rate setting to the diesel generators, stable operation is possible without energy storage system. The proposed method is evaluated 

by employing a simulation model using the measured photovoltaics output and the actual load at a hospital. As a result, it shows 

that it can correspond a demand side response of ± 10 % in the season when the load is low at the hospital with a contract demand 

980 kW with 20 % of a photovoltaics. Furthermore, it is clarified that it can correspond a demand side response of ± 25 % in the 

season during peak load seasons.   

Keywords Hospital, virtual power plant (VPP), diesel generator (DG), photovoltaic (PV), demand side response (DR), predicted 

load, machine learning (ML). 
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1. Introduction 

Japan has seen numerous natural disasters, including 

Typhoon No. 15 in September 2019 and Typhoon No. 19 in 

October 2019 [1]. Following the Kumamoto earthquake in 

April 2016 [2], a significant power outage persisted for 

roughly a week. Also, the eastern Hokkaido Iburi earthquake 

in September 2018 forced an emergency stop of the Tomato-

Atsuma thermal power plant, leaving 2.95 million homes with 

blackout [3],[4]. In response to such disasters and power 

system accidents, hospitals are equipped with diesel 

generators (DGs) that are based on Japanese Industrial 

Standards (JIS) [5]. DGs also encourage energy conservation 

by using distributed energy, which actively utilizes renewable 

energy. The standard operating time is 72 h at disaster base 

hospitals, and there has been a gap between recent long-term 

disaster recoveries and the actual power reserves. Diesel 

generators use fossil fuels, and one issue is how to ensure that 

the required fuel is available during a disaster when the time 

of use is unclear. Fuel that has degraded beyond usage is 

discarded, which can have negative environmental effects [6]. 

Therefore, the fuel tanks of small- and medium-sized hospitals 

may be empty even though there is a DG system. In 

consequence, DGs fail to start up and medical services cannot 

continue. It is vital to occasionally refuel the tank with fuel to 

avoid fuel degradation. Installation of backup power system, 

such as photovoltaics (PV), is becoming popular measures 

against energy saving even in hospitals. Since it is challenging 

to operate a complicated system of DGs and PV, it is necessary 

to install more energy storage system (ESS). But several 

hospitals do not want to install it because ESS is so pricey.  

In the previous studies, assuming the combined use of 

DGs and PV in a large hospital, an energy management system 

(EMS) that can power in long-term island mode and continue 

medical services has been proposed. In a hospital with a single 

1,000-kVA DG, assuming islanded operation in the event of a 

disaster, the conventional DG is miniaturized as a distributed 

power source, and renewable energy is taken into account 

during the installation planning. It also suggested an 

optimization method that is decentralized and minimized fuel 

consumption by operating multiple DGs. There are two 

proposed optimization method: one is linear programming 

[7],[8] the other is genetic algorithm [9]. 

Assuming the combined use of DGs and PV, the electric 

power balance during islanding have been evaluated, from the 

historical total load in a hospital. In these studies, it examined 

the load prediction method that is learned by a machine 

learning from the actual total load in the hospital and the 

meteorological data published by the Japan Meteorological 

Agency and combined with the EMS [10]. In addition, 

experiments are conducted using a power emulator, that the 

proposed EMS can deliver a steady power supply even 

throughout a week of islanded operation [11]. 

As per further investigation, it was found that there is a 

new issue with respect to the deterioration of fuel in the tank 

[6]. Based on the results of previous studies, the next study 

proposed to deal with the power system of the hospital as a 

virtual power plant (VPP) [12]. A VPP can be defined as a 

cluster of dispersed generating units, flexible loads, and 

storage systems that are grouped to operate as a single entity. 

The generating units in a VPP can employ both fossil and 

renewable energy sources [13]. A VPP can be realized by 

utilizing advanced energy management technology to 

integrate renewable energy that is distributed energy resources 

such as storage batteries, and a demand side response (DR), 

which is an advanced demand management method.  

The reference [12] proposes to keep the net demand 

constant by using output of PV and DGs. However, it has not 

been able to respond to a rise and reduction of DR. Moreover, 

when the power demand of the overall power system is low 

and the output of photovoltaic power generation is high, the 

aggregator requests that the output of photovoltaic power 

generation be suppressed. 

Therefore, this paper proposes a method that can 

correspond a DR as a VPP in a power grid without an ESS in 

order to address the operational issues of a complicated 

combination of DGs and PV. It requires a load prediction first. 

The prediction method is the load one step ahead prediction 

and providing the optimized output distribution and rate 

setting to the DGs, stable operation is possible without ESS. 

The proposed method is evaluated by employing a simulation 

model using the measured PV output and the actual load at a 

hospital. 

The contribution of the paper, can be outlined as follows: 

1) In terms of generator fuel, it is possible to effectively use 

the fuel that would be discarded due to deterioration of 

long-term storage. 

2) It is possible to decrease the trouble that DG does not start 

up due to the disaster. 

3) A hospital as VPP can get a reward by operating DR 

according to the request of an aggregator. The reward may 

cover some of the cost of the fuel. 

4) It is possible to deal with DR without limiting the output 

of self-consumed PV. In other words, it can contribute 

keep the utility power grid stable. 

The rest of this paper is organized as follows. Section II 

introduces a hospital grid integrated with PVs as a VPP, and 

the proposed model and control of a VPP are described in 

Section III. Section IV explains the model validation is 

provided. Finally, Section V provides the conclusions and 

outlook. 

2. Hospital Grid Integrated with PVs as a Virtual Power 

Plant 

Recently, there has been a growing number of hospitals 

installing a PV system on energy saving or environmental 

issues. The reference [13] provides guidance for redesigning 

existing hospitals based on a concept of microgrids by 

installing PV systems. It also reports that improving the power 

grid will improve the quality of medical services.  
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Figure 1 shows a utility grid and an emergency power 

system with coupled DGs as the diesel generator and a PV 

system.  

 
Fig. 1. Configuration for a hospital grid as a VPP. 

The area where PV can be installed on the hospital is 

exactly 20 % of the contract demand in this study, which is 

980 kW. The hospital load, DGs and PVs are connected to a 

grid of on-site power generation. Depending on the DR signal, 

the DGs start, and the supply power is managed by the EMS 

for optimal operation with the minimization of fuel 

consumption. 

Aggregator controls a trading between the supply and 

demand of power. The trading procedure is as follows from a 

to f.  

a. Aggregator receives a DR request from the electric power 

company. 

b. Aggregator requests to the customer. 

c. Aggregator aggregates the amount of demand from 

consumers. 

d. Aggregator provides demand to the electric power 

company. 

e. Aggregator receives a reward from the electric power 

company. 

f. Aggregator pays the reward to the customer. 

3. Proposed Model and Control of a Virtual Power Plant 

Even in the case of VPP compatibility with the power 

system, the system model is evaluated under the same 

conditions, considering the shift to islanded operation mode. 

However, evaluating the responsibility of DGs in an ESS is 

beyond the scope of this study.  

In the following Subsection 3.1 explains a system model. 

An operation method for VPP is describes in Subsection 3.2. 

Subsection 3.3 explains the predicted hospital load model. 

Optimum energy scheduling method of DGs using linear 

programming for the minimization of fuel consumption is 

provided in Subsection 3.4. Subsection 3.5 is explanation of 

DGs and control model and an operation limit of DGs.  

3.1. System Model 

Figure 2 shows the block diagram of a distributed power 

system model that consists of DGs and a PV system in the 

hospital. The system model takes the weather, PV output, and 

hospital load as inputs. A machine learning (ML) algorithm 

then predicts the hospital load using the one-step-ahead 

prediction load as the training goal data. PV output scales 

conversion that is performed using actual measurement 

values, and the data is given to a simulation model to evaluate 

the effectiveness of the proposed method. So, since the 

measured values are used, predicting a PV output is not 

required. 

The output target value of the DGs is obtained by 

subtracting the PV output and the net demand target values 

from a load of the one-step-ahead prediction. For the output 

target value, an optimization method utilizing linear 

programming is used to determine the distribution of the 

generator output that minimizes the overall fuel consumption; 

then, the DG output target and rate of change are determined 

for each of the DGs. The system model is characterized by an 

algorithm that provides the rate of change to the generator 

using the load predicted by an ML, one-step-ahead prediction. 

Additionally, the system model can support both a connected 

mode on the utility grid and an islanded operation mode. 

3.2. Operation Method for Virtual Power Plant 

Figure 3 shows a scheme of the proposed operation 

method for a VPP in a hospital. Effective power [kW] is on 

the vertical axis, while time [hour] is on the horizontal axis. 

The green area represents the PV power generation, and the 

red area represents the power generated by DGs. The net 

demand is shown by the cyan region. 

 
Fig. 2. Block diagram of the proposed method for a VPP. 
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Fig. 3. Scheme of the proposed method for a VPP. 

 
Fig. 4. Maximum of demand. 

The proposed operation method for a VPP in a large 

hospital is as follows, assuming that the demand increases 

depending on increasing the PV output during the daytime: 

(Step 1) The DGs start in control with minimized fuel 

consumption. 

(Step 2) No control restrictions on the PV output in the large 

hospital. 

(Step 3) Net demand controls depend on the demand side 

response target value. 

The papers [14]-[16] report that a DR contributes to the 

stability of the power system. The proposed method also 

contributes to stability of the utility power grid. 

Figure 4 shows the maximum demand using DGs in 

March and July. Maximum demand [kW] is on the vertical 

axis, while hospital load [kW] is on the horizontal axis. The 

figure makes from multiple regression model in Eq. (1), where 

𝐿  is the measured hospital load, 𝑃𝑃𝑉  is the measured PV 

output, through 𝑘1  and 𝑘3  are coefficient of multiple 

regression, as shown in Table 1. 

𝑃𝑝_𝑠𝑒𝑡_𝑚𝑎𝑥 = 𝑘1𝐿 + 𝑘2𝑃𝑃𝑉 + 𝑘3                        (1) 

Table 1. Regression parameters 

k1 k2 k3 

−224.1452 1.0987 0.9859 

3.3. Predicted Hospital Load Model 

The paper [17] proposed the optimum operation schedule 

for distributed power sources using DGs, PV, ESS, and so on. 

However, the report appears to have a practical issue because 

overshoots and undershoots occur because the rate of change 

of the power source is not taken into account during the 

operation. Therefore, it estimates a load of one-step-ahead 

prediction to consider the rate of change in load in this paper. 

Actual load time series, actual load time, actual load day 

of the week, actual road weather information vector one step 

before (past), and actual load time series vector are all 

employed in the training target. In particular, it is easy to 

handle using the actual load data in the input layer without 

feeding it back to the hidden layer. An ML configuration 

diagram is shown in Fig. 2. Following learning, the load at 

time n is predicted using the day of the week at time n, the 

weather information data, i.e., the temperature at time  

(𝑛 − 1) , and the load at time (𝑛 − 1) . Generators can be 

stabilized by reducing the overshoot or undershoot because the 

DG controller can make a change in the rate of the DG output 

from the current load to the predicted load. 

In this model, by understanding 𝑛  and one-step-ahead 

prediction (𝑛 + 1), it is possible to give the next output target 

value and change the rate-setting value from EMS to DG. The 

data sampling time is set to 10 minutes because the 

meteorological data of the Japan Meteorological Agency 

(JMA) is published every 10 minutes. 

In Eq. (2), 𝑢 is the input sum of each neuron, 𝑥 is the input 

value, 𝑤  is the weight factor, 𝜃  is the bias, and 𝑀  is the 

number of constituent neurons in each layer [18]-[20]. In Eq. 

(3), 𝑓(𝑢) is the activation function and 𝑧 is the output of each 

element. 

𝑢 =  𝜃 +  ∑ 𝑤𝑘𝑥𝑘
𝑀
𝑘=1              (2) 

𝑧 =  𝑓(𝑢)              (3) 

Equation (4) shows the activation of the output layer as an 

identity function. 𝐿̂ is the predicted hospital load by an ML. 

𝐿̂ =  𝑓(𝑢) = 𝑢                                     (4) 

The training error Δ𝐸 is evaluated using the mean squared 

normalized error performance function shown in Eq. (5), 

where 𝐿 is measured hospital load and 𝑛 is a number of data. 

Δ𝐸 =  
1

𝑛
∑ (𝐿(𝑡) −  𝐿̂(𝑡))

2
𝑛
𝑘=1                             (5) 

MATLAB provides a solver for an ML. The parameter 

“trainbr” of MATLAB can train any network as long as the 

weighting function, net input function, and transfer function 

have derivatives. The linear combination of error and weight 

squares is minimized through Bayesian regularization. After 

training, it changes the linear combination to enhance the 

network’s generalization quality [18]. Also, “trainlm” is 

Levenberg-Marquardt optimization of a network training 

function that updates weight and bias values, and an improved 

version of it has also been proposed [19],[20].  

Figure 5 shows the flow chart in an ML for predicting the 

hospital load. The first stage includes the dataset of clock, day 

of week, weather information and hospital load are given at 

the first step. The correlation of load prediction using weather 

information data has also been reported in past papers using 

an ML [21],[22]. Additionally, changes in weather, holidays,  
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Fig. 5. Flow chart of a machine learning predicting hospital 

load. 

weekends, and other factors can affect power use, with the 

temperature being cited as the weather information data with 

the greatest impact [23]. So, the load prediction method is used 

weather information as an input of an ML in this study. 

Weather information data can be obtained from the JMA in 

Japan. The database of JMA provides air temperature, 

precipitation, wind speed, and wind direction in the area where 

is locate of the hospital.  

Next step, the dataset partition is defined for training, 

validation, and testing, the solver is selected. Also, the data 

partitioning should be defined. The data partitioning methods 

are 70 % of the entire Dataset for training, 15 % of the entire 

Dataset for validation, and 15 % of the entire Dataset for 

testing in this study.  

In the third step, the initialization of weights and bias is 

executed. The weights and biases are tweaked to optimize the 

network performance in network training of the fourth step. 

The network can adjust weights by comparison until an ML 

output matches the target. The training dataset determines the 

ideal weights and biases. The validation dataset determines an 

algorithmic stopping point or the ideal number of concealed 

units. 

The last phase uses the network; a portion of the gathered 

data is randomly selected and sent to the network for testing. 

The training finishes either reaching a maximum number of 

epochs or performance goal is met. 

3.4. Optimization for Minimization of Fuel Consumption 

An optimized demand is made to use linear programming 

for the DGs to minimize their fuel consumption [7],[8]. Based 

on the manufacturers’ specifications for the DGs, the least 

squares approximation is used to fit the fuel characteristics 

with the linear equation in Eq. (6).  

In Eq. (6), 𝑊𝑔𝑖  is a rough function representing the 

relationship between the fuel consumption and generator 

output when two DGs are employed. The parameters 𝑎𝑖  and 

𝑏𝑖  are characteristics of the DGs, and 𝑃𝑔𝑖  is the generator 

output (in kW), where 𝑖 is the operation number of the DG. 

𝑊𝑔𝑖  − 𝑎𝑖𝑃𝑔𝑖 = 𝑏𝑖                           (6) 

The reference to the generator 𝑃𝑔_𝑠𝑒𝑡  is subtracting 𝑃̅𝑃𝑉 

from 𝐿̂ as the predicted load. Meanwhile, 𝑃𝑝_𝑠𝑒𝑡 is given by 

the function generator as a demand, where the parameter 𝑚 is 

2 in Eq. (7).  

𝑃𝑔_𝑠𝑒𝑡 = ∑ 𝑃𝑔𝑖_𝑠𝑒𝑡
𝑚
𝑖 = 𝐿̂  −  𝑃̅𝑃𝑉  − 𝑃𝑝_𝑠𝑒𝑡                         (7) 

The equation condition of the linear programming is 

expressed by Eq. (8) as follows: 

𝐴𝑒𝑞𝑋 = 𝑏𝑒𝑞                                (8) 

Because this paper uses two generators, 𝐴𝑒𝑞 , 𝑏𝑒𝑞, and 𝑋 

can be given as follows: 

𝐴𝑒𝑞 = [

1 0  − 𝑎1 0
0 1 0  − 𝑎2

0 0 1 1
0 0 0 0

]                (9) 

𝑏𝑒𝑞 = [

𝑏1

𝑏2

𝐿̂  −  𝑃̅𝑃𝑉

0

]           (10) 

𝑋 =

[
 
 
 
 

𝑊𝑔1

𝑊𝑔2 

𝑃𝑔1_𝑠𝑒𝑡 

𝑃𝑔2_𝑠𝑒𝑡 ]
 
 
 
 

           (11) 

The following inequality conditions are utilized in the 

linear programming, and the generator’s operating range is 

between 5 % and the rated load. The constraints of inequality 

for the output powers of the DGs are shown in Eq. (12), where 

𝑃𝑖𝑅 is the effective power with a power factor of 0.8 and the 

minimum output is 5 % of the rated value. 

0.05 ∙ 𝑃𝑔𝑖𝑅
≦ 𝑃𝑔𝑖_𝑠𝑒𝑡 ≦ 𝑃𝑔𝑖𝑅

                             (12) 

Equation (13) shows the object function for linear 

programming that identifies the generator output based on the 

aforementioned criteria that consume the least fuel when two 

DGs are used [24]. Then, parameter 𝑚 is given by a constant 

as 2. 

min
𝑃𝑔𝑖

𝑓 = ∑ 𝑊𝑔𝑖
𝑚
𝑖=1                                    (13) 

The output of a linear programming iterative calculation 

retains the prior value if there is no numerical solution. 

3.5. Diesel Generators and Control Model 

Figure 6 shows the DG model in Fig. 2. The generator 

control model controls the output of the generator model 

according to the generator output target. RS is a rate setter, C 

is a controller of DG, and DG is a diesel generator, and the 

index is several units, where the parameter 𝑚 is 2. 
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Fig. 6. A diesel generator model in Fig.2. 

The model consists of a fuel model, gas turbine model, 

and generator model [25]. The controller model has the two 

functions of load control and a proportional control of net 

demand.  

In Fig. 2, the net demand 𝑃𝑝  from the utility grid is 

calculated by subtracting the currently measured load from the 

DG output and PV output, as shown in Eq. (14). However, 

there are operational limitations under the circumstances 

depicted in Eq. (15), where 𝑃𝑔_𝑚𝑖𝑛 is the minimum load of the 

generator. 

𝑃𝑝 = 𝐿 − ∑𝑃𝑔  −   𝑃𝑃𝑉          (14) 

𝑃𝑝_𝑠𝑒𝑡 < 𝐿 − 𝑃𝑃𝑉  − ∑𝑃𝑔_𝑚𝑖𝑛 ≅ 𝑃𝑝_𝑠𝑒𝑡_𝑚𝑎𝑥        (15) 

In addition, 𝜀𝑔  is an error in subtracting 𝑃𝑔_𝑠𝑒𝑡  from 𝑃𝑔 . 

𝑃𝑔_𝑠𝑒𝑡 is a reference to the generator output. Finally, 𝜀𝑝 is an 

error of subtracting a 𝑃𝑝_𝑠𝑒𝑡 from 𝑃𝑝, as shown in Eqs. (17) and 

(18). In Eq. (16), the PI controller is a base controller, so the 

error 𝜀𝑔 uses the PV output. 

However, as the deviation of net demand must be instantly 

eliminated, the error 𝜀𝑝  for the proportional control directly 

employs the measured value of the PV production. 

𝑢𝑔 = 𝐾𝑃𝐵 (𝜀𝑔(𝑡) +  𝐾𝐼 ∫ 𝜀𝑔
𝑡

0
(𝜏)𝑑𝜏)  +  𝐾𝑃𝜀𝑝      (16) 

Here, 

𝜀𝑔 = 𝑃𝑔_𝑠𝑒𝑡  − 𝑃𝑔                           (17) 

𝜀𝑝 = 𝑃𝑝_𝑠𝑒𝑡  − 𝑃𝑝                                        (18) 

The fuel model of the DGs is shown in Eq. (19). It is a 

straightforward first-order lag scheme, where 𝑊𝑖  is the fuel 

flow rate, i is the number of the DG, and 𝑢𝑔𝑖  is the fuel output 

command of the DG as the manipulated variable. Also, 𝑇1 is a 

time constant. Here, 𝑇1 is 0.4 s based on the characteristics of 

the actual machine. 

The generator model is shown in Eq. (20). It is a 

straightforward first-order lag scheme like the fuel model. 

Here, 𝑃𝑔𝑖  is the output of DG, 𝑖 is the number of the DG, 𝑊𝑖 

is the fuel flow rate, 𝑇2 is a time constant, s is the Laplace 

operator, and 𝑊𝑖  and 𝑃𝑔𝑖  are normalized. Here, 𝑇2  is 0.2 s 

based on the characteristics of the actual machine. 

𝑊𝑖(𝑠) =
1

1 + 𝑇1𝑠
𝑢𝑔𝑖(𝑠)                           (19) 

𝑃𝑔𝑖(𝑠) =
1

1 + 𝑇2𝑠
𝑊𝑖(𝑠)                  (20) 

The present measured load is subtracted from the 

expected load of an ML, and the predicted load period is 

divided by the time interval of the prediction process to get the 

following equation. Through Eq. (21) and Eq. (23), 𝑅𝑔𝑖  is 

given as the rate setter for the generator controller.  

∆𝑡 = 𝑡(𝑛 +  1)  −  𝑡(𝑛)                     (21) 

𝑅𝑔𝑖 = 
𝑃̂𝑔𝑖(𝑛 + 1) − 𝑃𝑔𝑖(𝑛)

∆𝑡
                    (22) 

|𝑅𝑔𝑖
| ≤ 0.05 ∙ 𝑃𝑔𝑖𝑅                           (23) 

4. Consideration of the Demand Side Response 

Even in the case of VPP compatibility with the power 

system, the system model is evaluated under the same 

conditions, considering the shift to islanded operation mode. 

However, evaluating the responsibility of DGs in an ESS is 

beyond the scope of this study.  

According to a statement made by the electric power 

company that controls the area of hospital, they have 

demanded an output cap from PV generation businesses in the 

same area for 206 days for three years. Research on DR in 

Japan is developing, and the PV output limit will be shifted to 

DR as a policy of the Agency for Natural Resources and 

Energy [26]. 

The output of the PV experimental equipment in March 

and July, when the output limit was required, will be used in 

this instance to verify the proposed method. Nearly all the 

large hospitals have DGs for disasters, but as was already 

indicated, handling fuel remains to be a major issue. Therefore, 

in a power system that also uses a PV system, modeling to 

examine the DR in combination with an DG is described in 

Section IV. This section will go over how to control of the DR 

using the models and simulation results. 

4.1. Load Prediction 

The model by the trained ML is validated in a comparison 

of the actual load and model load. The fitting results are 

evaluated by Eqs. (24) and (25), where 𝐿̂  is the predicted 

hospital load by an ML, 𝐿 is the measured hospital load, and 

𝑛 is a number of data. 

The root mean squared error (RMSE) and the mean 

absolute error (MAE) is the indicators to measure the 

goodness of the numerical prediction model. In addition, when 

a good model is built, the model accurately captures the 

fundamental properties of the data, and only the noise that 

deviates from the normal distribution is regarded as an error. 

In such cases, RMSE/MAE ratio in the analysis results is close 

to 1.253 [27].  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐿̂ − 𝐿)

2𝑛
𝑖=1                     (24) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐿̂ − 𝐿|𝑛

𝑖=1                (25) 

Figure 7 shows the results for one week in March and July. 

The vertical axis is the load power [kW], whereas the 

horizontal axis is time [hour]. The solid blue line represents an 

actual hospital load, and the dotted red line represents the 

predicted load. 

Both load patterns share similar characteristics; before 

6:00, there is an almost continuous low load, which increases 

gradually after 6:00 due to preparation for breakfast. After 

8:00, the daytime power consumption during the outpatient 

services time indicates a broad peak. The maximum load 
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denotes 701 kW in March and 929 kW in July, which is the 

maximum. According to the results of a hospital load survey, 

the number of outpatients is easily affected by the weather 

information, and an ML algorithm is employed to take 

advantage of this causal relationship to increase the accuracy 

of estimating the overall load of a large hospital. 

As a result, in case of the input signal is only the air 

temperature, the hidden layer is three with thirty neurons, 

respectively, and one output layer, it is confirmed that the 

RMSE/MAE between the predicted load value obtained by 

using 'trainbr'. In case of the input signal is merely the air 

temperature, an ML establishes by the hidden layer of three 

with thirty neurons, respectively, and one output layer. It is 

confirmed that higher performance is obtained using solver of 

'trainbr' as an ML. The results are evaluated by using the 

RMSE/MAE ratio between the predicted load value and the 

actual load. The daily RMSE/MAE ratio shows between 1.281 

and 1.423 in March. It confirms that the daily RMSE/MAE 

denotes between 1.342 and 1.574 in July. The error in March 

is calculated using RMSE, it ranges from 2.0 kW to 2.8 kW. 

There is a 2.2 kW to 3.6 kW inaccuracy in July. It is clarified 

that the error is within 0.37 % of contract power 980 kW at 

rated.

 
(a) Results of case for a week in March. 

 
(b) Results of case for a week in July. 

Fig. 7. Comparison between the predicted load and actual hospital load. 
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4.2. Rate of Change of Hospital Load and PV Output 

 
Fig. 8. Rate of change of hospital load and PV output. 

In the paper [28], the lamp speed limit of a DG is changed 

from 4.5 % to 6.2 % in order to observe the effects of the DG. 

Hence, the output change rate is up to 5 % of the rated output 

in this paper. 

Figure 8 shows a rate of change of hospital load and PV 

output. The vertical axis is rate power [kW/min], the 

horizontal axis is days in a year [days] in the upper figure (a), 

whereas in the lower figure (b) is time in a day [hour]. It is 

shown that the rate of change in hospital load is between −5.9 

and +8.4 kW/min, and the rate of change in PV output in Fig. 

8 is between −26.4 and +25.0 kW/min. Given that DGs can 

adjust their output at a maximum rate of 40 kW/min (5%/min), 

it is obvious that the rate of change of load and PV is within 

this range. 

4.3. Case Study 

4.3.1. Scheduling for demand side response control 

In two case studies, the actual load patterns data of a large 

hospital and the actual performance data of its DGs will be 

used to demonstrate the effectiveness of the hospital grid 

configuration and operation method for one day operation of 

a VPP. The model validation is performed using the pattern of 

PV power generation in fine weather because it is expected 

that output suppression of solar power generation will be 

issued, under the large hospital load in Fig. 7. 

The timetable for demand control is shown in Table 2 as 

a case study. According to the demand rise schedule, the net 

demand set value increases from 350 to 450 kW between 

11:00 and 11:30; it will then remain constant between 11:30 

and 13:00 and then decrease to 350 kW between 13:00 and 

13:30. In the demand reduction schedule, the net demand set 

value expected to decreases between 11:00 and 11:30, stays 

constant between 11:30 and 13:00, and increases between 

13:00 and 13:30. Case Study I is analyzed using the measured 

hospital load in March, the measured hospital load in July is 

used in Case Study II.  

In two case studies, the optimum energy scheduling using 

linear programming to minimize the fuel consumption using 

two different generators are selected. These generators have a 

combination of the same type 500-kVA and 250-kVA and 

750-kVA. 

Table 2. Scheduling for demand side response control 

Demand side response 

(schedule) 

11:00-

11:30 

11:30-

13:00 

13:00-

13:30 

Power in  

demand rise 
↗ → ↘ 

Power in  

demand reduction 
↘ → ↗ 

4.3.2. Simulation results for demand side response 

Figures 9 shows the simulation results as a Case Study I 

using the system model of Fig. 2. This case uses the measured 

load in March of Fig. 7 (a) and the measured PV output data. 

In all of the graphs, the vertical axis is power [kW], and 

the horizontal axis is time, from 0 to 24 [hour]. There are four 

cases from (a) to (d) in Case Study I. The top and bottom two 

figures in the first row from the left are the graphs when two 

500-kVA generators are used and the DR is raised, as shown 

in Fig. 9 (a). The two figures in the second row from the left 

in Fig. 9 (b) are the graphs when two 500-kVA generators are 

used, and the DR is reduced. In Fig. 9 (c) of the third row from 

the left are the graphs when the combination 250-kVA and 

750-kVA generators are used and the DR is raised, and Fig. 9 

(d) of the first row from the right uses the combination of 250-

kVA and 750-kVA generators and the DR is reduced.  

In the four figures at the top of Fig. 9, the solid blue line 

shows the hospital load on weekdays in March, the dotted red 

line represents the predicted load, the solid green line indicates 

the data obtained by subtracting the amount of PV power 

generation from the load, and the solid cyan line is the net 

demand. In the four figures at the bottom of Fig. 9, the solid 

blue line represents the output of DG 1, whereas the solid red 

line is the output of DG 2.  

The two generators operate from 5 % to 100 % of their 

respective generating capacities with a maximum rate of 

change that is limited to 5 % of the rated output per minute. 

For each generator, an output target value is provided by an 

optimization algorithm that minimizes the fuel consumption. 

Focusing on the DR operation period from 11:30 to 13:30, 

which is shown by the net demand in light blue, as a result of 

verification of the change from 350 by ± 99.5 kW based on Eq. 

(1), the combination of the same type of 500-kVA generator 

shows that one generator.  

According to the optimization for minimization of fuel 

consumption of Subsection 3.4 in Section III, for the 

combination of 250-kVA and 750-kVA, the small 250-kVA 

generator follows the load and when the output of the small 

generator is deemed insufficient, whereas the large 750-kVA 

generator is in backup operation. Also, in the case of a DR rise, 

as shown by Eq. (15), it can be seen that the allowable limit of 

operation is when the outputs of the two generators reach the 

minimum. 

Figures 10 is as in Fig. 9, but for the results of Case Study 

II that uses the measured hospital load in July shown in Fig. 7 

(b). There are four cases from (a) to (d) in Case Study II. 

Focusing on the DR operation period as in Fig 10, it can verify 

the variation from 400 by ± 251 kW based on Eq (1).  
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For the combination of 250-kVA and 750-kVA, the 

optimization method and parameters are the same as Case 

Study I, however, the large 750-kVA generator follows the 

load. The small 250-kVA generator is in full load operation 

because the load is higher than Case Study I. Also, in the case 

of a DR rise, as shown by Eq. (15), it can be seen that the 

permitted limit of operation is when the outputs of the two 

generators reach the minimum. 

 

 
Fig. 9. Results for Case Study I. 

 
Fig. 10. Results for Case Study II. 
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Fig. 11. Verification of optimized output for generators.

As a result, it shows that it can correspond a DR of ± 10 % 

in the season when the load is low at the hospital with contract 

demand 980 kW with 20 % of a PV. Furthermore, it is clarified 

that it can correspond to a DR of ± 25 % in the season when 

the load is high. 

The proposed system for VPP that combination of DGs 

and PV, the DGs is responding to demand and does not 

suppress PV output, so the fuel consumption of the DGs can 

be minimized. The operation of the two DGs is optimized by 

the linear programing method to minimize fuel consumption.  

Figure 11 shows the verification of optimized output for 

generators. The optimization curve as a design can be 

calculated minimization of fuel consumption against 

generator output using through Eq 6 and Eq 13, as shown in 

broken black line of Fig 11. The asterisk and circle marker 

represents the simulation results of overall generators output 

in Fig 9 and Fig 10, respectively. It is confirmed that fuel 

optimization is working effectively because the relationship 

between the generator output [kW] and the fuel consumption 

[kg/h] during operation is distributed on the optimization 

curve. 

5. Conclusions and Outlook 

This paper presents an operation method for diesel 

generators, which is applied to the demand side response as a 

virtual power plant with renewable energy for usage in a 

hospital. The proposed method can scale the measured PV 

output to the actual load at a disaster base hospital and provide 

it to the model.  

The results are summarized as follows: 

(1) A load prediction method that uses a machine learning 

with actual hospital data and weather information data 

recorded by the Japan Meteorological Agency is 

proposed using MATLAB. 

(2) The machine learning used the weather information data 

and actual hospital load as the one-step-previous load, 

and the error in March is 2.0 kW to 2.8 kW when 

evaluated by RMSE. In July, there is an error of 2.2 kW 

to 3.6 kW. It is clarified that the error is within 0.37 % of 

contract power 980 kW at rated. 

(3) The output of the predicted load is optimized by linear 

programming to minimize the fuel consumption, and an 

algorithm is established to allocate demand between two 

generators. 

(4) It is clarified that a DR of 10 % in the season when the 

load is low and a DR of 25 % in the season when the load 

is high might correspond at the hospital with a contract 

demand of 980 kW and 20 % of a PV. 

There is no fuel cost for power generation because DGs 

are operated with fuel that makes a plan to be discarded due to 

deterioration. Since all reward for DR from the operation of 

DGs is benefit, the reward can be compensated for the cost of 

purchasing new fuel for emergencies. An optimization and 

operation method of fuel tank capacity is a research task in 

future work.  
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