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Abstract- Due to significant distributed generator penetrations, microgrid protection issues have an impact on power system 

reliability. As a result, fault identification and protection in microgrids are critical and must be addressed to improve the power 

system's robustness. If any fault arises in or outside the microgrid (MG), the microgrid should get disconnected from the main 

grid promptly using a static switch like a circuit breaker situated near the point of common coupling (PCC). To supply reliable 

and quality power to the consumer by reducing the burden on the utility grid this paper proposes a “Cluster Microgrid System”. 

The proposed system is formed by integrating neighbourhood microgrids and is designed to operate both in autonomous and 

grid-connected modes. Moreover, Wavelet Transformation based frequency multi-resolution technique is also proposed for 

detecting different type’s faults appearing in different locations of a cluster microgrid system. To locate these faults, the 

Daubechies-4 wavelet decomposes the extracted signal into detailed and approximated signals along with the two-terminal 

traveling wave phenomenon. The proposed wavelet transform-based cluster microgrid system is implemented in 

MATLAB/Simulink 2021a environment. To verify the robustness of the proposed system, the proposed Wavelet Transform 

(WT), and Wavelet Packet Transform (WPT) techniques are analyzed and compared by considering performance indices such 

as standard deviation and mean absolute deviation, median absolute deviation, and entropy. From the results, it is observed that 

WPT gives fruitful results when compared with WT. 

Keywords Microgrid, Wavelet Transform (WT), Wavelet Packet Transform (WPT), Cluster Microgrid, Utility grid. 

 

Nomenclature 

CMG   Cluster Microgrid 

DG   Distributed Generation 

DWT   Discrete Wavelet Transform 

EMS   Energy Management System 

HPF   High Pass Filter 

LPF   Low Pass Filter 

MG   Microgrid 

PCC   Point of Common Coupling 

WT   Wavelet Transform 

WPT   Wavelet Packet Transform 
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Advances in distributed generators (DGs) have been 

crucial in addressing the challenges with conventional power 

system networks for the past several years. The substantial 

growth of DGs provides a potential answer to the non-

availability and fatigue of fossil fuels, as well as fast growth 

in electric loads, environmental pollution, and the high cost 

of petroleum products and gases. DGs have been quite 

successful in addressing a variety of technological, 

governing, and current problems in the traditional electric 

system [1]. Microgrids, which are low voltage active 

distribution networks, have replaced the traditional electric 

power system as a result of this innovative technology. A 

microgrid (MG) is a combination of distributed generation 

(DGs), energy storage elements, and a variety of loads that 

can be controlled via monitoring and protection systems [2]. 

Microgrids are frequently connected to the main grid at the 

distribution side with the use of a circuit breaker at the point 

of common coupling (PCC). Under typical operating 

conditions, the microgrid is synchronized with the utility. In 

case the conventional grid faces any issues like fluctuations 

in voltage or frequency, it will be disconnected from the 

utility grid and operates in an islanded mode to meet critical 

demands [3]. Due to the less energy density of MG and 

reliance on regional topographical factors, they are 

vulnerable to climate change; DGs in a microgrid have 

significantly less capacity than huge generators in traditional 

systems. They are close to consumers to provide the right 

voltage and frequency to electric and heat loads with 

minimal transmission losses to avoid congestion of the 

power network. They improve the current power system's 

technical standards, economic aspects, and reliability of the 

environment by maintaining electricity while the regular 

power supply is available. Large fluctuations in some system 

parameters may occur as a result of such disruptions, 

potentially leading to power system instability. As a result, to 

preserve power supply continuity, these disruptions must be 

noticed and addressed quickly. According to IEEE 1547, the 

concept of interconnected microgrids is the prominent 

solution for delivering reliable and stable power to the 

consumer without creating much burden on the utility grid 

[4, 5]. The ability of the electric power system to maintain a 

desirable level of performance in the face of severe 

turbulence and restore it over a reasonable length of time is 

characterised as resilience [6]. Hence, it is very important to 

identify the type of fault/disturbance occurs inside or outside 

the microgrid for operating the system effectively without 

load shedding. This paper mainly focussed on identifying the 

type of fault in different locations in the system proposed [7]. 

In this aspect following are some literature works carried out 

for identification of the fault in microgrids. 

In reference [8] a complete review of diagnosis methods 

of various faults in the power transmission system is 

provided. The samples of voltage and currents are commonly 

used for analysis. Three major and important tasks are 

provided independently to communicate a more logical and 

thorough grasp of the concepts including detection, 

categorization, and location of the fault. Extraction of 

features and modifications using dimensionality reduction 

approaches are explored. In [9] author presents a fault 

detector for the protection of three-phase transmission lines 

with series capacitor compensation using wavelet transform. 

In [10], the authors provided a novel technique for detecting 

and classifying various microgrid problems. Using a multi-

resolution method, a Wavelet Neural Network (WNN) is 

used to identify and extract features to characterize various 

faulty signals. In [11], a criterion method based on the 

chaotic neural network (CNN) and a defect detection 

approach based on the discrete wavelet transform (DWT) is 

proposed for effective fault detection. A microgrid fault 

protection system based on a combination of signal 

processing and data mining is presented in [12]. The voltage 

and current signals are pre-processed using the multi-

resolution decomposition of the wavelet transform to 

compute the total harmonic distortion of the voltage and 

current signals. However, in real time, new algorithm-based 

fault detection is utilized to apply the dq0 and wavelet 

transformation to local measurements [13]. This method 

involves converting three-phase voltage or current signals 

into dq0 components and analysing their behaviour during 

faults to identify patterns that indicate the commencement of 

a problem. However, in [14] authors proposed a new failure 

detection approach based on wavelet transform (WT) for 

motor and which uses an improved particle swarm 

optimization (PSO) and a back propagation (BP) neural 

network. Authors in [15] suggested a wavelet transform 

(WT)-based fault detection approach for hydrogen energy-

based distributed generator systems to detect power quality 

disturbances in the low-voltage grid link. Using discrete WT 

and Daubechies wavelets of order 4, the proposed approach 

detects voltage swell, voltage sag, voltage interruption, and 

transient disturbances in a proposed system. Later in [16] a 

comprehensive review of fault detection methods like 

conventional and artificial intelligence methods is presented. 

Reference [17] suggested a method that combines the linear 

discriminant analysis (LDA) with the cuttlefish optimizer 

(CFO) learning process-based random forest algorithm 

(RFA) for fault diagnosis in the power system. In [18] the 

study of a critical analysis of various faults detection 

strategies and classifying the faults using model-based and 

data-driven methods are presented. The characteristics of a 

microgrid under various operating scenarios of a faulty 

component, such as impedance (high as well as low) failures, 

are described in [19] using fault models from a grid-

connected PQ controlled DG with a low voltage ride through 

capacity (LVRT). Reference [20] provides an overview of 

MG fault diagnosis strategies, as well as their constraints, 

and a new discrete-wavelet transform (DWT) based 

probabilistic method for MG fault diagnosis is proposed. The 

suggested model consists of numerous layers and a restricted 

Boltzmann machine (RBM), which permits the model to 

reconstruct probability over its inputs. Later in [21], a study 

is presented under varied DG voltages and fault conditions, 

detection of a fault in microgrids by controlling power 

quality, and DGs with low voltage ride through capability 

which includes high impedance and low impedance. The 

positive sequence current phase variation in the particular 

DG voltages was used to pinpoint the location of the defect. 

The research in [22] offers a new fault identification 

approach for low voltage DC microgrids with RES to 

establish a practical method. The suggested new fault 

detection approach uses the instantaneous current change 
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rate, the DWT detail coefficient, and absolute detailed energy.  
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Fig. 1. One line diagram of proposed cluster microgrid system 

Based on fault launched traveling waves, reference [23] 

proposes a new technique for detecting, classifying, and 

locating various dc fault types in MVDC microgrids (TWs). 

 So far the many researchers have developed and 

proposed conventional approaches (Travelling wave-based) 

and artificial intelligence techniques for the detection of 

faults in a single microgrid operated in grid-connected and 

isolated modes. By keeping this in mind, in this paper we 

proposed a cluster microgrid system by integrating adjacent 

microgrids with interoperability and also proposed frequency 

multi resolution-based wavelet packet transform approach for 

the detection of faults in the proposed system. 

So, the following are the key contributions of this paper:  

➢ Formation of a renewable-energy-based microgrid 

cluster by interconnecting numerous adjacent microgrids in 

an urban energy community is proposed. This improves 

power supply reliability by allowing the cluster to handle its 

own energy needs rather than relying on the utility grid. 

➢ Multi-Resolution based Wavelet Transformation 

and Wavelet Packet Transformation approaches are proposed 

by extracting frequency information for fault detection. 

The rest of the article is structured as follows. Section 2 

consists of the architecture of the proposed cluster microgrid 

system, Section 3 presents a concept of Multi-Resolution 

based Wavelet Transforms, Section 4 discusses the 

validation of results followed by the conclusion presented in 

Section 5. 
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2. Architecture of Cluster Microgrid System 

Figure 1 shows the one-line diagram of the proposed 

“Cluster Microgrid (CMG)” system under study. The 

proposed CMG system is designed by integrating four 

microgrids (MG1-MG4) and each MG is associated with 

localized renewable sources. The detailed modeling of all the 

constituent units in the system is given in [24]. The voltage 

received from renewable energy sources is very less and not 

adequate to light the required load demand in the MG since 

the power provided from these sources is periodic. By 

increasing the duty ratio of the converter, the voltage is 

raised to 500V to supply the AC loads with 415V. To meet 

the loads, each microgrid is modeled using a combination of 

free and paid energy sources, a boost converter, and a 

multilevel inverter. The ratings of all the components are 

given in Appendix-A. In the system total of five fault 

locations viz., Location 1 at MG1, Location 2 at MG2, 

Location 3 at MG3, Location 4 at MG4, and Location 5 is a 

point of common coupling (PCC) are selected to detect and 

classify the type of fault. The key goal of the proposed 

cluster microgrid is to supply uninterrupted and quality 

power [28] to the consumer premises without much 

dependency on the utility grid. So, the focus now shifted to 

Location 5 appeared at the PCC of the system. The Energy 

management system (EMS) is developed according to 

accomplish the energy transaction in the proposed system 

during excess/deficit power conditions [1, 27]. Whenever a 

fault exists in a particular microgrid that will be disconnected 

from the cluster microgrid system and the remaining 

microgrids will share the load to provide continuous and 

reliable power to the consumer. Accordingly, the EMS will 

send the trip signals to the circuit breakers at the load side of 

each microgrid to avoid unwanted shortages from the 

abnormal conditions. The details of the different renewable 

energy sources used in the microgrids in a cluster are given 

in Table 1.  

 Table 1. Details of resources used in the proposed system 

Microgrid Resource Power (kW) Power (kVA) 

1 
Solar PV and 

Battery 
4.25 40.61 

2 
Wind & Fuel 

cell 
2.75 41.68 

3 
Solar, Wind & 

Battery 
4.5 60.49 

4 
Solar, Fuel 

cell & Battery 
4 53.85 

3. Proposed Methodology 

3.1. Theory of Wavelet Transform (WT)Figure Properties 

Wavelet Transform is a signal processing technique that 

uses a “Time-Frequency multi-resolution” approach to 

analyze power system disruptions. It makes use of a movable 

window that shrinks at high frequencies and expands at 

lower frequencies. Mother wavelets consist a set of basis 

functions which are then used to split the signal function into 

distinct frequency levels using continuous expansion and 

interpretation operations. Wavelet transforms can depict 

functions and manifest their local properties in the time-

frequency domain at the same time. These qualities make it 

easier to train neural networks accurately to model 

exceedingly nonlinear signals. A given function (signal) can 

be expressed as a sum of wavelets and scalable functions 

with coefficients at various time shifts and scales using the 

Discrete Wavelet Transform (DWT) (frequency). By 

deconstructing signal components that overlap in both time 

and frequency, DWT may extract information from transitory 

signals [25, 26]. As per the Discrete Wavelet Transform 

(DWT), the approximation and detailed coefficients of a time 

series signal )( can be decomposed by using the scaled 

function ( ) j  and mother wavelet function ( ) j  as given 

in Eq. (1) and Eq. (2). 

( ) 







−= −− kjj

jn  22 5.0     (1) 

( ) 







−= −− kjj

jn  22 5.0     (2) 

Where jnZk ,, are integers, the basic function is translated 

by ‘k’ units of time and ascended by a factor of j2 . The 

scalable function is coupled to a low-pass filter (LPF) with 

coefficients (k) of the filter. With this filter coefficient, 

function of the wavelet is coupled to a high-pass filter (HPF) 

(k) are given in Eq. (3) and Eq. (4) [12, 26].  

( ) ( ) ( )kkh

k

−=  22      (3) 

( ) ( ) ( )kkg

k

−=  22      (4) 

Figure 2 shows the procedure of detailed coefficients 

decomposition using the wavelet by taking a sample level 

N=3. 
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Fig. 2. Detailed coefficients decomposition procedure using 

wavelet for level 3 

3.2. Theory of Wavelet Packet Transform (WPT) 

In the general step, the orthogonal wavelet 

decomposition approach divides the approximated 

coefficients into two halves. We now have approximated 

coefficient vector and detailed coefficient vector on a coarser 
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scale as a result of splitting. The detail coefficients indicate 

the information lost between two subsequent approximations. 

After that, the new approximation coefficient vector is 

divided, and no further features are re-examined. Each detail 

vector coefficient is similarly split into two pieces in the 

matching wavelet packet scenario, using the same approach 

as in approximation vector splitting. This is the most 

comprehensive analysis: As shown in Fig. 3, a complete 

binary tree can be produced [24]. Decomposition with Multi-

Resolution Technique is a highly accessible discrete wavelet 

transform (DWT) approach. Mallat was the first to offer 

multi-resolution signal decomposition theory as a 

mathematical model. At any level N, the multi-resolution 

decomposition of a time-varying signal is written as given in 

Eq. (5). 

( )

( ) ( )



+














−+














−=

i
in

ii

N

k k
ikN

k N
kN

DA

kdkaf






2222
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here kNa ,  is approximated low frequency and kid ,  is 

detailed coefficient of high frequency components of original 

signal at the level ‘N’. A filter bank can be assumed as the 

DWT. The approximation and detailed coefficients are 

obtained by passing the sampled signal )(f  through a LPF, 

)(khH =  and a HPF, )(kgG = . 

S 

A1 
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ADA3 DDA3 

D1 

DD2 
AD2 
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DDD3  

Fig. 3. Detailed coefficients decomposition procedure by 

wavelet packet for level 3 

 

Following is the step-by-step approach for multi 

resolution technique for a 3 level decomposition.  

1. The input signal is decomposed into detailed (D1) 

and approximation (A1) coefficients with a frequency bands 

of kHZ
ff ss









−

42
 for D1 and kHZ

fs








− 0

4
 for A1. 

2. The output sample is down by a factor of 2 for both 

low pass and high pass filters. 

3. For further decomposition D1 is directed to next 

stage to yield new set coefficients. 

4. In later stage D2 is collected in the range 

kHZ
ff ss









−

84
 and A2 is collected in the range kHZ

fs








− 0

8
. 

The above procedure is repeated for the ‘n’ number of 

decompositions. The code for detecting faults in different 

locations using MATLAB is shown in Fig.4. The flow chart 

of fault detection using wavelet transformations is shown in 

Fig. 5. 

clc 

clear all 

1. Initialize the currents and voltages at PCC of cluster microgrid; 

2. [C, L] = wavedec (x, N, wavelet name);                Wavelet Syntax applied on signal 

             where   wavedec – Function used to decompose the signal 

                                      x – Signal 

                                      N – Layer of wavelet (default=1) 

                  wavelet name – Type of wavelet used (Daubechies) 

                       C – output layer decomposition vector 

                                      L –  No. of coefficients by layer 

3. D = detcoef (C, L, N);               Wavelet Syntax for detailed coefficients 

               where   detcoef – Function used to obtain detailed coefficients of  the signal 

          D – Extract the detailed coefficients at the coarsest scale 

4. Define new variables m, n, p, q as maximum values of coefficients extracted 

5. if  

         if  

                if  

                     if  

                     display (‘ Three phase to ground fault is detected ‘) 

                     end 

               end 

          end 

    end 

6. Repeat the step 5 for different faults such as LG,LL,LLG,LLL and no fault condition 

 

Thresholdm 
Thresholdn 

Thresholdp 
Thresholdq 

 

Fig. 4. MATLAB code for fault detection 

Start 

Measure 3-Φ voltages and currents  

at PCC a cluster microgrid and define 

              Threshold value 

   Wavelet/Wavelet packet Transform 

Decomposition of current/voltage signals 

Statistical extraction for each detailed  

  coefficients obtained by WT/WPT  

Is there any fault? 

using WT/WPT 

     Classify the fault  

i.e. LG/LL/LLG/LLL/LLLG 

Identify the location using 

   Corresponding model 

Terminate 

Yes 

No 

 

Fig. 5. Flow chart of proposed WT/WPT implemented in 

MATLAB/Simulink 
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Logic of Energy Transactions with utility grid  

Fig. 6. MATLAB/Simulink implementation of proposed cluster microgrid system 

 

4. Analysis of Simulation Findings and Discussion 

In this section, the simulated graphical results are 

obtained and analyzed by the proposed methodologies WTs 

and WPTs, after the results are compared quantitatively 

based on performance parameters such as standard deviation, 

median absolute, mean absolute, and entropy, which are used 

to identify discrete fault disturbances. As illustrated in Fig. 6, 

the cluster microgrid is attached to the main utility grid and 

is modeled in the MATLAB/ Simulink environment in 

various operational scenarios employing solar, wind, fuel 

cells, and storage batteries.  

4.1. Case 1: Fault detection in a cluster microgrid system 

 In this subsection, various fault disturbances are formed 

at the cluster microgrid, which includes LG (Line to ground), 

LL (Line to Line), LL-G (Line to Line to ground), LLL 

(three phase), LLL-G (Three phase to ground). The faults 

under investigation include a combination of symmetrical 

and unsymmetrical faults, providing a diversity of 

disturbances to test the resilience of the suggested 

approaches. A fault simulator in MATLAB/Simulink's power 

system is used to create faults in the microgrid cluster. At 

first, the line-to-ground fault is applied at the PCC of cluster 

MG with a duration of 0.1 sec to 0.2 sec. The voltage 

magnitude drops at 0.1 sec immediately after the occurnace 

of fault and regains its  original magnitude at 0.2 sec at 

which the fault is cleared. The simulated results obtained by 

passing this voltage signal through “WT” and “WPT” are 

displayed in the Fig. 7(a). It is identified that both methods 

are capable of detecting faults in a timely and accurate 

manner. The detailed coefficient is shown in Fig. 7(b) by 

considering level one. From the contour plots, the color 

coding in both transforms changes throughout the fault, 

which aids in detecting the voltage signal disturbance. The 

efficacy of proposed methodologies are being tested by 

adding a 40-dB noise signal to the voltage function, detection 

results are displayed in figures 7(c) and 7(d). WT and WPT 

are used to pass this voltage signal with noise. Wavelet 

Transform is unsuccessful to identify the variations in the 

magnitude of voltage during the fault time, resulting in no 

discernible color changes in the contour. The contour 

displays the fluctuations during the LG fault in the case of 

the wavelet packet, indicating its effectiveness in detecting 

voltage signal irregularities in noisy situations.  

 Similarly, next, the line-to-line fault is created at the 

PCC of cluster MG with a duration of 0.1 sec to 0.2 sec. The 

voltage magnitude drops at 0.1 sec immediately after the 

occurrence of fault and regains its original magnitude at 0.2 

sec at which the fault is cleared. The simulated results 

obtained by passing this voltage signal through “WT” and 

“WPT” are displayed in the Fig. 8(a). Similar to the previous 

case again it is identified that both methods are capable of 

detecting faults in a timely and accurate manner. The detailed 

coefficient by considering level one is shown in Fig. 8(b). 

From the contour plots, the color coding in both transforms 

changes throughout the fault, which aids in detecting the 

voltage signal disturbance. The efficacy of proposed 

methodologies are being tested by adding a 40-dB noise 

signal to the voltage function, detection results are displayed 

in figures 8(c) and 8(d). WT and WPT are used to pass this 

voltage signal with noise. Wavelet Transform is unsuccessful 

to identify the variations in the magnitude of voltage during 

the fault time, resulting in no discernible color changes in the 

contour. The contour displays the fluctuations during the LL 

fault in the case of the wavelet packet, indicating its 

effectiveness in detecting voltage signal irregularities in 

noisy situations.  
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Wavelet 

Wavelet Packet 

(b) 

(a) 

(d) 

(c) 

 

Fig. 7. LG fault (phase A) detection at PCC of cluster microgrid a) voltage signal b) detail coefficient c) contour plot of 

wavelet transform (WT) d) contour plot of wavelet packet transform (WPT) 

Wavelet 

Wavelet Packet 

(a) (c) 

(b) (d) 
 

Fig. 8. LL fault (phase A) detection at PCC of cluster microgrid a) voltage signal b) detail coefficient c) contour plot of 

wavelet transform (WT) d) contour plot of wavelet packet transform (WPT) 
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Wavelet 

Wavelet Packet 

(a) (c) 

(b) (d)  

Fig. 9. LLG fault (phase A) detection at PCC of cluster microgrid a) voltage signal b) detail coefficient c) contour plot of 

wavelet transform (WT) d) contour plot of wavelet packet transform (WPT) 

 

Wavelet 

Wavelet Packet 

(a) (c) 

(b) (d) 
 

Fig. 10. LLL fault (phase A) detection at PCC of cluster microgrid a) voltage signal b) detail coefficient c) contour plot of 

wavelet transform (WT) d) contour plot of wavelet packet transform (WPT) 
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Table 2. Maximum values of detailed coefficients of in all phases using WT  

Location of the 

fault 
Type of the fault 

Maximum coefficient of currents in phases R, Y, B and Ground 

m (Phase-A) n(Phase-B) p(Phase-C) q(Ground) 

Location-1 

 

3-Φ to Ground 51.3447 13.9434 55.9995 2.6059e-12 

3-Φ  51.3447 13.9351 55.9995 2.6064e-12 

Line-Line-Ground 51.3241 13.9858 54.9675 2.5988e-12 

Line-Line 50.3692 13.9415 57.9531 2.7653e-12 

Line-Ground 51.3652 18.5517 56.0004 2.4683e-12 

Location-2 

3-Φ to Ground 51.1448 13.9413 55.9995 2.6025e-12 

3-Φ  51.1448 13.9357 55.6735 2.5913e-12 

Line-Line-Ground 51.1225 13.9898 55.9672 2.6041e-12 

Line-Line 50.3696 13.9426 57.9528 2.7590e-12 

Line-Ground 52.9516 13.9025 56.8688 2.4354e-12 

Location-3 

3-Φ to Ground 51.3448 13.9431 55.9875 2.6047e-12 

3-Φ  51.3448 13.9352 55.9875 2.6003e-12 

Line-Line-Ground 51.3448 13.9865 55.9995 2.5997e-12 

Line-Line 50.3696 13.9416 57.9528 2.7417e-12 

Line-Ground 51.3640 13.9088 56.0039 2.4823e-12 

Location-4 

3-Φ to Ground 51.3448 13.9439 55.9996 2.6555e-12 

3-Φ  51.3448 13.9356 55.9996 2.6446e-12 

Line-Line-Ground 51.1448 13.9847 55.9994 2.6330e-12 

Line-Line 50.3699 13.9414 57.9526 2.6298e-12 

Line-Ground 51.3639 13.9145 56.0004 3.2478e-12 

Location-5 

3-Φ to Ground 47.0834 263.3394 48.1778 1.6195e-8 

3-Φ  47.0834 263.3460 48.1778 1.5469e-8 

Line-Line-Ground 47.0834 195.7122 55.9921 2.0820e-8 

Line-Line 51.3377 199.3076 48.1778 1.7592e-8 

Line-Ground 52.1332 199.3216 49.1457 1.9661e-8 

Table 3. Comparison of performance indices of WT and WPT 

Location of the 

fault 
Performance parameter LG fault LL fault LL-G fault LLL fault 

Location 1 

Wavelet Transform 

Standard Deviation 272.5 281.6 272.3 265.7 

Median Absolute 244.5 265.3 241.4 235.7 

Mean Absolute 220.6 231.9 225.3 198.5 

Entropy 285.2 302.7 320.7 318.4 

Wavelet Packet Transform 

Standard Deviation 287.1 300.4 291.2 283.4 

Median Absolute 260.8 281.3 264.6 251.2 

Mean Absolute 238.4 248.4 245.2 224.2 

Entropy 299.4 317.3 331.2 326.3 

Location 2 

Wavelet Transform 

Standard Deviation 282.5 282.2 278.3 280.5 

Median Absolute 264.2 275.8 261.2 255.1 

Mean Absolute 227.1 251.2 237.7 218.9 

Entropy 282.3 292.3 317.2 329.6 

Wavelet Packet Transform 

Standard Deviation 297.3 302.5 302.1 296.3 

Median Absolute 279.7 291.8 277.4 273.2 

Mean Absolute 242.9 268.5 254.3 236.7 

Entropy 298.4 311.2 321.8 327.5 
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Location 3 

Wavelet Transform 

Standard Deviation 289.1 301.6 282.8 269.5 

Median Absolute 214.7 276.3 247.4 228.4 

Mean Absolute 245.2 247.9 236.5 221.2 

Entropy 297.5 312.4 302.8 307.5 

Wavelet Packet Transform 

Standard Deviation 304.2 309.4 297.4 281.9 

Median Absolute 237.4 292.6 263.5 241.4 

Mean Absolute 259.9 262.5 252.5 236.9 

Entropy 314.8 321.5 317.4 319.8 

Location 4 

Wavelet Transform 

Standard Deviation 277.1 321.6 272.3 265.7 

Median Absolute 234.5 295.3 241.4 235.7 

Mean Absolute 250.6 271.9 225.3 198.5 

Entropy 275.2 312.7 320.7 300.7 

Wavelet Packet Transform 

Standard Deviation 289.3 345.5 287.3 285.6 

Median Absolute 248.8 307.4 259.9 249.5 

Mean Absolute 267.4 289.9 251.2 219.9 

Entropy 293.2 321.5 335.2 327.4 

Location 5 

Wavelet Transform 

Standard Deviation 270.9 280.9 275.3 257.7 

Median Absolute 244.5 275.8 261.1 223.2 

Mean Absolute 240.6 251.8 245.2 208.1 

Entropy 305.2 312.4 310.5 295.3 

Wavelet Packet Transform 

Standard Deviation 285.4 298.4 301.4 271.9 

Median Absolute 259.3 289.3 276.1 237.4 

Mean Absolute 254.5 267.6 261.5 223.5 

Entropy 311.2 325.3 327.3 334.2 

 

Figures 9 and 10 show the simulation plots of the voltage 

signal passes through both WT and WPT when a double line 

fault (LL) and three phase fault (LLL) applied at 0.1 sec to 

0.2 sec.  Table 2 gives the information of maximum values of 

detailed coefficients of three phase currents in Location 1, 

Location 2, Location 3, Location 4 and Location 5 under 

various faults i.e. LG, LL, LL-G, LLL using Wavelet 

Transform. Similarly, all the results obtained from both WT 

and WPT in terms of the performance parameters such as 

standard deviation, median absolute deviation, mean absolute 

deviation and entropy are given in Table 3. From the 

obtained simulated results and quantitative results we 

proposed that wavelet packet transform is the best choice for 

detecting the various faults. 

4.2. Case 2: Frequency response of cluster microgrid under 

faulted conditions  

The intended system is currently in grid 

connected/islanded operation. In this scenario, we measured 

the system's frequency response with static and dynamic 

loads by imposing a fault at the cluster microgrids PCC for 

the duration of 0.1sec to 0.3sec. The grid frequency is 

retained at the standard frequency levels with a settling time 

of 0.4 seconds and a minimum frequency deviation of 0.1 

percent shown in Fig. 11(a) as defined by IEEE standard 

1159-2009. When dynamic loads are applied in the duration 

of t=0sec to 0.3sec, substantial changes in the frequency 

response are detected, but the system keeps the normal 

frequency at a settling time of 0.58sec and with a deviation 

of 0.15 percent, as shown in Fig. 11(b). 

Islanding Mode 

Connected to grid 

Grid Connected Mode 

(a)  

Disturbances due to dynamic loads 

Connected to grid 

Tolerance 

Grid Connected Mode 

Islanded Mode 

(b)  

Fig. 10. Frequency characteristics of proposed system under 

islanded condition for a) static loads b) dynamic loads  

5. Conclusion 

The main objective of this paper is to propose a cluster 

microgrid system which employ WT and WPT techniques to 

detect and identify the different faults. The proposed 

methodologies WT and WPT are applied to the high-

frequency components which are introduced by distributed 
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generator based on power electronic inverters at the PCC. 

High frequency components are time and frequency 

localized. The proposed WT and WPT would characterize 

and also diagnose the fault disturbances by examining the 

fluctuation of contours and the performance parameters such 

as standard deviation, median absolute, mean absolute, and 

entropy. As illustrated in the different test cases presented in 

Section 4, it is observed that WPT is a technique performs 

better when compared with various operating conditions such 

as no-noise, 40-dB noise. Whenever the noise level in the 

voltage function crosses 40 dB, both methods are failed to 

extract geometric features for disturbance detection in no-

noise circumstances. As a result, it's been discovered that 

WPT is more effective and reliable at detecting disturbances 

in the aforementioned operating conditions.  

Appendix-A 

The modeling parameters of all the renewable sources used 

in the individual microgrids are listed in the following table. 

 

Parameter used for modeling Specification 

Solar PV irradiance 200 kW/m2-1000kW/m2 

Solar PV temperature 250c-500c 

Wind turbine @ base power 1100VA 

Wind speed 15m/s 

Normal voltage of the batter 90V 

Rated capacity of the battery 7.5Ah 

No. of fuel cell 85 

Temperature of the stack 343.5K 

Duty ratio of the converter 0.8 

Switching frequency of the 

converter 

100kHz 

Ground resistance 80 ohm 

Power Transformer  350kVA, 0.415/11kV 

Transformer frequency 50Hz 

Length of the transmission line 15km 

Fault resistance 0.001ohm 

Main grid voltage  11000V 

Frequency 50Hz 

Threshold value 40 
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