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Abstract- An indeterminate and variable nature of renewable energy sources like solar photovoltaic, wind power, load 

consumption, electric vehicles trips and market spot prices, make the operation and control of energy management system 

quite complex. Also, it is expected that the system should be consistent and resilient in case of extreme events like faults, 

hurricanes etc.  This paper has used the risk based optimization strategies considering uncertainty of aforementioned 

parameters to minimize the operational cost of the aggregator. A 13-bus practical distribution system with 15-scenarios (03-

scenarios as extreme events with high impact) are considered as a test system. WCCI-2018 award winning, Enhanced Velocity 

Differential Evolutionary Particle Swarm Optimization (EVDEPSO) computational intelligence method has been used to solve 

this problem. The comparative analysis of EVDEPSO with most popular Differential Evolution (DE) method shows that it 

provides better solutions than DE method. 
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1. Introduction 

The unpredictability of power generation by renewable 

energy resources, such as wind, solar insolation, results in a 

natural cycle in renewable energy generation. Because the 

principle of stable operation of an electrical power system 

necessitates a persistent balance between generation and 

demand, a huge involvement of variable renewable energy 

sources and their uncertainty significantly increases the 

challenge of managing the power system from the standpoint 

of security and robustness [1]. Given the power system's and 

market's reliance on weather, determining the timeline 

related variability with each technology is critical [1]. The 

modeling of energy resources provide a framework that are 

frequently used to optimise the design of distributed energy 

systems (DES). But, uncertainty can impair the model-based 

strategy of DES, leading to substandard design results. This 

uncertainty is presented by factors such as the stochastic 

behavior of renewables or the unidentified upcoming global 

energy and economical viewpoint [2]. The completion of a 

detailed uncertainty characteristic is a vital initial step in any 

effort to investigate and include uncertainty in the design of 

DES [2].  

The work in [3] presents a policy to decrease load 

shedding in islanded operating mode by properly utilizing 

available resources. The researchers employed mixed integer 

linear programming to model the normal and robust methods. 

Similarly, when compared to AC microgrids, the work in [4] 

explores the benefits of classified DC control systems in 

microgrids for enhancing resiliency. The work in [5] 

employs a self-healing approach to increase the resilience of 

overloaded microgrids utilising both centralized and 

distributed means. In the decentralized stage, the frequency 

of each migrogrid is utilized to specify the requirement of 

connections between different microgrids. At the centralised 

https://orcid.org/0000-0002-9997-2971
https://orcid.org/0000-0002-0155-000X
https://orcid.org/0000-0002-8065-9969
https://orcid.org/0000-0001-6016-534X
mailto:pratikmochi.ee@charusat.ac.in
mailto:kartikpandya.ee@charusat.ac.in
mailto:dharmeshdabhi.ee@charusat.ac.in
mailto:vipulrajput16986@gmail.com


INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
P. Mochi et al., Vol.12, No.2, June 2022 

922 
 

stage, the entire quantity of electricity generated by all 

microgrids is calculated. On other hand, extreme weather are 

becoming more common across the world, posing significant 

challenges to power grid resilience. Microgrids are a popular 

way to enhance the resilience of a power infrastructure. The 

study [6] describes how to manage battery storage system in 

a solar PV powered commercial building to improve 

resilience while lowering operational costs. To justify the 

uncertainty in the day-ahead energy price and solar power 

generation, concept of conditional value at risk (CVaR) was 

applied. The research work in [7] developed a novel 

stochastic bi-level model for optimum risk-based microgrid 

scheduling under load demand and renewable power 

generation uncertainty. In the upper and lower levels, the 

provided bi-level model determines the ideal size and 

location of Distributed Energy Resource (DER) units, as well 

as the best distribution of section switches to describe the 

boundary of microgrid. It solves microgird planning problem 

using a scenario-based strategy, with the Kantorovich 

scenario reduction method being used to achieve a balance 

between solution accuracy and computing burden, 

considering risk natural and risk averse approaches. 

Several studies has implemented meta heuristic 

optimization techniques in microgrid applications for solving 

ERM problems [8,9]. The proposed methods in the work [8] 

and [9] are Cross-Entropy Variable Neighborhood 

Differential Evolutionary Particle Swarm Optimization (CE-

VNDEPSO) and Hybrid Levy Particle Swarm Variable 

Neighborhood Search Optimization (HL_PS_VNSO) 

respectively. A multiple microgirds with interconnections 

has been proposed in [10] with optimum planning under 

uncertainty. To achieve an improved system operation and 

managing efficiency, [11] proposed stochastic resource plan 

method. With the inclusion of dispersed generating and 

energy storage devices in the system, the work in [12] 

proposed an integrated graph partitioning and integer 

programming technique for optimum loop-based 

construction of microgrid. An hourly based energy 

scheduling optimization is investigated in [13] where, the 

findings indicate how forecast inaccuracies, as well as 

contractual restrictions between the storage system, Electric 

Vehicle (EV) charging station and aggregator, affect the 

energy scheduling expenses.  

A work presented in [14] is focused on optimum energy 

scheduling for a smart residential building where, an 

optimization problem is framed in which not only the ideal 

contract power value is determined, but also the optimal 

schedule of the EV charge and discharge is determined, 

taking photovoltaic power generation and load consumption 

profiles into account. The findings revealed that by 

combining an appropriate single contract power value with 

an energy management system, the power expenses may be 

significantly reduced. To address medium voltage (MV) 

networks vulnerable to economic and technical concerns, by 

using branch exchange algorithm, a mathematical model of a 

novel risk-based strategy for optimum feeder routing has 

been devised in [15]. Through a collection of scenarios, the 

proposed technique evaluates the stochastic performance of 

distribution system demand and local generation. Using risk 

analysis indexes, the suggested strategy minimizes the cost 

of preparing for the worst-case situations. The cost of severe 

occurrences is taken into account while deciding on the best 

setup. 

A risk-based formulation for aggregators has been 

proposed in certain articles. A decision-making dilemma for 

profit maximising of a wind generating provider and the 

supply of Electric Vehicle (EV) and demand response (DR) 

aggregators, for example, is described in [16]. The risk 

measurement parameter is used in that effort to reduce the 

influence of market price uncertainty, EV and DR demand, 

and bids made by other wind generating organizations. A 

work in [17] formulates the risk-constrained stochastic power 

procurement issue of electrical retailers, taking into account 

load and pool-market pricing uncertainty. The authors 

suggest a risk method for achieving identical cost in all 

uncertainty situations, resulting in a scenario-independent 

procedure that costs the merchant more but carries nearly no 

risk..In same regards, risk curtailment strategy was fully 

established in [18] to limit the danger of the existence of 

uncertain units such as wind.  

The heuristic viral colony search algorithm and the 

discrete non-linear programming model are used to solve the 

model. Considering the Robust ERM, optimum DER 

management for profit maximization risk analysis is 

incorporated in [19] using CVaR to assess the risk linked 

with the uncertainty of various DER. The average earnings 

fall as the weight allocated to risk aversion grows, and the 

CVaR cost increases. However, electric vehicles were not 

taken into account in the model used in this study. A recent 

work in [20] solves ERM problem where the findings reveal 

that even with a 4% rise in operating expenses and a 6.2 

percent increase in projected costs, the risk mechanism 

provides for a better and more robust solution. This is 

achieved by lowering the risk measurement parameters (VaR 

and, as a result, CVaR) as well as the worst-case scenario 

cost. In other words, by choosing this option, the aggregator 

lowers its risk in the event of the worst-case scenario, with a 

13.89 percent price drop in the objective function.  

The proposed work in this paper, takes a platform of 

IEEE WCCI 2022 event [21], where energy resource 

management (ERM) problem considering unpredictability of 

power generated by renewables, variable load demand and 

consumption, market prices, and uncertain electric vehicles 

trips, similar to the works presented in [22], [23]. The 

stochastic nature of these restrictions is examined using a 

number of scenarios, each with a chance of occurrence. The 

peculiarity of this new test case is the inclusion of risk 

strategies in the formulation, which allows the aggregator to 

plan their operations taking into account various degrees of 

risk associated with various situations like risk-neutral and 

risk-averse considerations. By doing this, an expectation is to 

develop a solutions that safeguard the aggregator from severe 

events and developing a unique optimization model that 

takes into account a large number of distributed energy 

resources. 
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2. Methodology 

2.1. Energy Resource Management System 

In the proposed work, the Energy resource management 

(ERM) problem is shown in Fig. 1. And it has following 

features: 

➢ Consideration of uncertainty of renewable power 

generation, load, EV trips and market prices. 

➢ The use of risk analysis methodologies such as value at 

risk (VaR) and conditional value at risk (CVaR) 

measures to cope with parameter uncertainty and find 

solutions that protect the aggregator from severe 

situations. 

➢ To cope with the computational cost of considering all 

conceivable scenarios with unknown parameters and 

the huge number of variables addressed, the method is 

based on current metaheuristic optimization method. 

➢ To investigate the impact of VaR and CVaR metrics in 

power and energy systems over a series of case studies 

based on real-world data. 

 

Fig.1. Risk based ERM [14] 

The solution structure is a critical component of 

metaheuristics for representing a given solution. The 2022 

competition solution representation is based on the vector 

form shown in Fig 2. The ERM under consideration includes 

13,680 variables per individual, 570 variables distributed per 

period, with 21 variables forming the generators' active 

power and another 21 binary variables indicating the 

generators' status. A total of 500 EVs were investigated, with 

25 different load types, two different ESSs, and one market . 

The fitness function that the selected metaheuristic assesses 

for cost reduction is shown in Fig. 3. The database 

containing the formed scenarios is supplied as an input to the 

function at first, along with the value of the risk aversion 

variable. The equations in the appendix section of [21] are 

then used to analyse each situation 

 

Fig.2. Solution Representation [21] 

 

 

Fig.3. Fitness Function Evaluation [21] 

This analysis is carried out in order to determine the cost 

of each scenario, which is then kept in order to compute the 

projected cost. According to the formula in [15], the VaR and 
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CVaR values are calculated using the estimated cost, the cost 

of each scenario, and the probability of each scenario. The 

aggregator initiates a judgement process based on the risk 

aversion factor once the risk parameters have been 

determined. That is, the aggregator picks the optimum 

method depending on the value of the Objective Function. 

The metaheuristic performs this evaluation task in order to 

reduce the Objective Function value in a specific number of 

iterations; hence, when, the metaheuristic will merely reduce 

the predicted cost. Even when the is equal to 1, the 

metaheuristic seeks to minimise both the estimated cost and 

the CVaR [11]. 

For the day ahead, a risk-neutral approach is being 

examined. ERM takes into account the unpredictability of an 

aggregator's technology as stated before. In this situation, the 

stochastic behavior of these parameters is taken into account 

in the strategy, which involves a series of scenarios each with 

a chance of occurrence. This aggregator's schedule is created 

depending on the predicted scenario when risk is not taken 

into account. The anticipated cost is the cost and value of the 

goal function when no risk aversion technique is used, and its 

formulation is provided by the equations below [21]. 

tot OC In

s s s sZ Z Z P= − +     (1) 

1

( )
sN

Ex tot

s s

s

Z Z
=

=      (2) 

Where,  is the value of total objective function (OF) 

for each scenario s,  represents operational cost,  is 

income in each scenario,  is penalty for bound violation, 

 is expected objective function cost,  is probability of 

respective scenario. A risk-aversion approach examines the 

risk related with the previously listed technologies' 

unpredictability. The additional cost is which is 

added to expected OF cost in  % of scenarios 

having highest cost. After calculating , the  is 

calculated by using following equation [15]. 

1

1
( ) ( ) ( )

1

sN
tot tot

s s s

s

CVaR Z VaR Z   
 =

= + 
−


        (3) 

Where, 

( ) ( )tot Ex tot tot Ex tot

s s s sZ Z VaR Z Z Z VaR Z  = − −   +  

0 =  Otherwise 

( ) ( ) ( )tot tot

s sVaR Z z score std Z = −   

Here, φ is a cost parameter connected with the worst-

case situations; that is, when the cost of each scenario s goes 

beyond the predicted cost when the  value is added. If 

the reverse happens, φ is set to 0. The norminv() function in 

MATLAB is used to determine the z-score, which is set to 95 

percent. Considering this parameter, the scheduling 

problem's fitness value (and OF) fluctuates depending on the 

degree of risk aversion considered. In this case, the model of 

the fitness value (or OF) is as follows: 

( )Ex tot

sOF Z CVaR Z= +         (4) 

The parameter β in this case shows the proportion of aversion 

to risk. This option has a range of 0 to 1. When 0 is used, the 

OF value equals the anticipated cost, which is a risk-free 

approach. In contrast, a value of 1 indicates that the approach 

has a complete aversion to risk, giving the safest answer in 

the worst-case situation. For this study, β is set to 1 and 

operational cost and income cost calculations areas per [21]. 

2.2. Enhanced Velocity Differential Evolutionary 

Particle Swarm Optimization (EVDEPSO) Algorithm 

The EVDEPSO method [19] (Enhanced Velocity 

Differential Evolutionary Particle Swarm Optimization) is an 

upgraded version of the Differential Evolutionary Particle 

Swarm Optimization algorithm (DEEPSO). Where DEEPSO 

is a hybrid of PSO, EA, and DE. The first stage of the 

EVDEPSO method is to determine the strategic parameters, 

after which equations (5) and (6) are used to initialize the 

population's location and velocity [24]. 

min max min

, ( )p d d d dX X X X= + −   (5) 

min max min

, ( )p d d d dV V V V= + −    (6) 

The starting location and velocity of the particle p for 

dimension d are  and  respectively. In this case, 

p=1, 2...., Np and d=1, 2...., D. Where Np is the population 

size and D is the solution vector's dimension, after the 

populations have been initialized, fitness of each particle is 

evaluated and calculation is done for the global best particle 

Gbest according to equations in [24]. If the new velocity 

calculated [24] exceeds the boundary limit, it is adjusted 

using equation (7). After that equation (8) is used to calculate 

new position. 

min max min max

min max min min

. ( )... ..

. ( )... ..

new

p p p p pnew

p new

p p p p p

V L F V V if V V
V

V L F V V if V V

 + − 
= 

+ − 
      (7) 

. ( )new new

p p pX D F X V=  +     (8) 

This equation is a tweaked version of the standard new 

position equation that all population-based algorithms use. 

The vector sum of the current particle location Xp and new 

velocity multiplied by Deceleration Factor (D.F.) decelerates 

particle movement and prevents them from trapping in local 
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minima in this equation. The concept of algorithm is shown 

in fig 4. 

 

Fig.4. Illustration of EVDEPSO 

 The problem is solved by step by step manner as per 

proposed methodology. In the first step, the strategic 

parameters of the algorithm is set and the initialization of 

position & velocity of each particle has to be defined. To find 

the global best particle, the fitness of each initialized particle 

is evaluated and then EVDEPSO memory is updated with the 

global best particle. Iterations begin at the third phase. Copy 

each particle's current position and velocity, then update 

memory with the copied population and current global best 

particle. The numbers are generated randomly between 0 and 

1, where, if the value is higher than local search probability 

then global exploration calculates new velocity and position 

of each particle, otherwise local exploration calculates the 

same. Search space limit is enforced after calculation the new 

velocity and position. The best particle is calculated and it is 

used to generate new population for next iteration. The 

process is repeated for global best particle. The memory of 

EVDEPSO is updated and next iteration takes place to check 

threshold limit of maximum iteration. If the threshold limit is 

reached, the algorithm is ended OR process starts again. 

3. Test System 

This case study used a medium voltage distribution 

network from a smart city in the BISITE laboratory in 

Salamanca, Spain [25]. In bus 1, there is a 30MVA 

substation, 15 DG units consisting of 2 wind farms and 13 PV 

plants, and four 1Mvar capacitor banks. This network 

includes 25 various loads in terms of consumption, including 

residential and office buildings, as well as some service 

buildings  like hospital, fire station, and shopping mall. 

For EV charging, there are four slow charging stations 

with 7.2kW rating and three fast charging stations with 50kW 

rating. Fig 5 shows line diagram of 13 bus distribution 

network. The specifications of energy resources are shown in 

table 1. 

 

Fig.5. 13 bus system network [21] 

Table 1. Energy Resources Specifications 

Energy 

Resource 

Prices 

(m.u./MWh) 

min-max 

Capacity 

(MW) 

min-max 

Forecast 

(MW) 

Min-max 

Units 

PV 29-29 -- 0-0.81 13 

Wind 31-31 -- 0.3-3.07 2 

External 

supplier 
50-90 0-30 -- 1 

Storage 

(charge) 
110-110 0-1.25 -- 2 

Storage 

(Discharge) 
90-90 0-1.25 -- -- 

EV 

(charge) 
0-0 

0.01-

0.05 
-- 500 

EV 

(Discharge) 
90-90 

0.01-

0.05 
-- -- 

Demand 

Response 
100-100 0-1.21 -- 25 

Load 0-0 -- 
0.01-

2.38 
25 

Electricity 

Market buy 

& Sell 

29.85-

104.61 
-- -- 1 

 

4. Result Analysis 

In this section, the results obtained by competition 

organizers [21] by DE and results obtained by proposed 

algorithm EVDEPSO [24] are compared. The benchmark 

results and benchmark scenarios for DE are shown in table 2 
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and table 3 respectively. The benchmark results gives results 

of objective function, expected cost (Fex), value at risk and 

conditional value at risk. The benchmark scenarion results 

are evaluated for average, minimum, maximum and standard 

scanario values. The same results for EVEDEPSO will be 

obtained for comparative analysis. 

Table 2. Benchmark Results of DE 

Row OF Fex VaR CVaR 

Run 1 109344.91 17412.586 49738.304 91932.321 

Run 2 119560.56 18961.773 55406.232 100598.79 

Run 3 120172.26 18150.121 55163.108 102022.14 

Run 4 116199.83 17976.216 53212.798 98223.612 

Run 5 111885.68 17654.665 50957.88 94231.014 

Run 6 127374.75 18073.717 59065.031 109301.03 

Run 7 109839.74 17380.123 50093.264 92459.619 

Run 8 114352.43 17547.672 52332.456 96804.753 

Run 9 105847.59 16987.619 48061.126 88859.969 

Run 10 110171.95 17397.799 50190.539 92774.151 

Run 11 121053.44 17816.645 55824.075 103236.8 

Run 12 119597.93 18001.435 54941.574 101596.49 

Run 13 118539.96 18661.52 54430.844 99878.441 

Run 14 125988.24 18219.462 58246.364 107768.78 

Run 15 112282.95 16851.466 51595.976 95431.482 

Run 16 119334.54 18187.962 54957.644 101146.58 

Run 17 113781.23 17571.271 52012.265 96209.958 

Run 18 112914.21 17774.009 51466.054 95140.197 

Run 19 112284.27 16971.381 51534.183 95312.885 

Run 20 119610.87 17992.249 54931.1 101618.62 

 

 

 

 

Table 3. Benchmark Scenarios of DE 

Row Avg Min Max Std 

Scenario Scenario Scenario Scenario 

Run 1 22087.12 12551.644 130441.92 30238.742 

Run 2 24812.34 12962.693 142156.84 33684.597 

Run 3 23202.6 12960.698 143601.77 33536.788 

Run 4 23096.49 12691.855 138705.24 32351.084 

Run 5 22189.7 12960.165 133522.25 30980.191 

Run 6 23253.47 12705.743 152492.75 35908.989 

Run 7 22209.07 12331.82 131022.92 30454.542 

Run 8 22231.04 12676.134 136588.57 31815.874 

Run 9 21330.7 12529.862 126247.01 29219.09 

Run 10 21901.17 12719.721 131463.76 30513.681 

Run 11 22838.56 12611.131 144759.81 33938.628 

Run 12 22876.83 12892.318 142925.39 33402.105 

Run 13 24164.47 12988.56 141263.76 33091.603 

Run 14 23500.95 12805.013 150749.45 35411.275 

Run 15 21467.92 12072.165 134200.7 31368.126 

Run 16 23648.66 12547.785 142429.01 33411.875 

Run 17 22329.41 12598.385 135880.08 31621.212 

Run 18 22602.68 12735.633 134751.28 31289.139 

Run 19 21576.31 12213.764 134173.62 31330.559 

Run 20 22836.69 12948.923 142954.63 33395.737 

 

The results of benchmark and scenarios for EVDEPSO 

are shown in table 4 and table 5 respectively.  

Table 4. Benchmark Results of EVDEPSO 

Row OF Fex VaR CVaR 

Run 1 114380.28 13979.1 54266.08 100401.2 

Run 2 101313.84 16360.4 48508.65 84953.48 

Run 3 102105.62 13848.8 47745.84 88256.83 

Run 4 99807.343 15484.5 47883.44 84322.86 

Run 5 116447.35 14266.3 55222.96 102181 

Run 6 138798.35 19216.4 69089.6 119581.9 
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Run 7 98061.022 15295.6 48678.06 82765.4 

Run 8 97300.882 13572 46333.16 83728.88 

Run 9 145182.39 17395.8 70891.71 127786.6 

Run 10 99862.396 13488.7 46874.07 86373.7 

Run 11 123139.61 18081.4 61141.37 105058.2 

Run 12 135236.62 19195.3 67799.62 116041.4 

Run 13 85420.182 13982.9 38713.14 71437.31 

Run 14 99480.817 13954.4 46270.11 85526.43 

Run 15 144022.61 20008.1 71486.03 124014.5 

Run 16 123763.22 16873.8 60859.26 106889.4 

Run 17 93782.959 16240.5 44064.61 77542.41 

Run 18 122903.77 20648 58908.18 102255.8 

Run 19 87821.422 15371 42576.44 72450.46 

Run 20 137081.11 17541.6 67764.56 119539.5 

 

Table 5.  Benchmark Scenarios of EVDEPSO 

Row 
Avg 

Scenario 

Min 

Scenario 

Max 

Scenario 

Std 

Scenario 

Run 1 18839.6 8978.2 137447.8 32991.4 

Run 2 21917 10575 119536.3 29491.2 

Run 3 18297.1 9221 122361.1 29027.4 

Run 4 21320.1 9454.6 108074.2 29111.1 

Run 5 19196.6 9197.7 139926.4 33573.2 

Run 6 27075.1 11134 164044.5 42003.5 

Run 7 21052.4 9344.1 115104.7 29594.2 

Run 8 18587.4 8418.2 115998.7 28168.6 

Run 9 24920.6 9663.6 173629.8 43099.1 

Run 10 18099.8 8749.9 119612.2 28497.4 

Run 11 25140.8 10753 145098 37171.3 

Run 12 26998.2 11175 159357.5 41219.2 

Run 13 17607.4 10202 101782.3 23535.9 

Run 14 18194.1 9568.3 119109 28130.2 

Run 15 28433.7 11410 162794.9 43460.4 

Run 16 23717.8 9822.4 146778.3 36999.8 

Run 17 21293.5 11056 110521.9 26789.4 

Run 18 27641.1 13462 138097.8 35813.6 

Run 19 20451.2 10125 102758.4 25884.6 

Run 20 25068.2 9838.3 162968.6 41197.9 

The comparison of ranking index, standard deviation, 

minimum deviation, maximum deviation, variance and 

average time for both algorithm is shown in table 6. A lower 

ranking index and higher value of cost saving shows that 

EVDEPSO gives better results than DE. The only positive 

side of DE is time taken for iterations. 

Table 6. Benchmark Summary 

 DE EVDEPSO 

Ranking Index 116006.87 113295.5893 

Pstd OF 5663.1432 19310.50683 

Pmin OF 105847.59 85420.18185 

Pmax OF 127374.75 145182.3906 

Pvar OF 127374.75 372895673.9 

Avg Time 274.56178 331.0997494 

The comparison of worst case objective function values 

obtained by DE and EVDEPSO for all 20 runs are shown in 

fig 6. Again these results proves EVDEPSO results better 

than results of DE. Considering the results of the run 6, run 

9, run 12, run 15 and run 20, the results of EVDEPSO gives 

higher cost savings which are rarely achievable by DE. 

 

Fig.6. OF values in worst case 

The bound violations in OF values for all 20 runs by 

both algorithms are compared in fig 7. While comparing the 
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values of objective functions, a much better value is obtained 

by EVDEPSO. 

 

Fig.7. Bound violation in OF value 

 Another parameter to compare both algorithms is run time 

taken by them which is shown in fig 8. For higher accuracy, 

EVDEPSO takes more time in first 19 runs, whereas in 20th 

run the time taken by DE is much higher. 

 

Fig.8. Run Time Comparison 

 Comparing overall results, a better cost savings, lower 

ranking index and worst case scenario results, EVEDEPSO 

gives better performance than DE. The future work may 

include optimal planning of a microgrid with wind energy 

[26], optimal sizing of energy resources [27], Electric vehicle 

[28] and smart metering [29] considering optimization 

techniques used in present work. 

5. Conclusion 

This paper has focused energy resource management for 

microgrid application. The uncertainty of renewable power 

generation under extreme conditions is taken as an 

optimization challenge. The results were obtained according 

to the rules and requirements of IEEE WCCI 2022. An 

optimization algorithm used in above mentioned event is DE, 

which is compared with EVDEPSO for IEEE 13 bus system. 

Both computational intelligence techniques were tested for 

OF value, ranking index, VaR, CVaR and run time. A 

significant improvement in resilience of grid operation is 

observed with EVDEPSO compared to DE.  
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