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Abstract- Dissolved gas analysis (DGA) is a common method used to diagnose transformer faults. The DGA methods such as 

IEC Code, Rogers' ratios, Duval triangle, and key gas methods failed to interpret the transformer faults in some cases and have 

poor diagnostic accuracy. Therefore, the researchers try to enhance the diagnostic accuracy by combining the traditional DGA 

techniques with artificial intelligence and optimization techniques. Still, they also have a complex way of interpreting the 

transformer faults. In the current work, a classification learner toolbox in MATLAB presented several Classifiers to classify 

the transformer faults and construct a classifier model used to diagnose some other test samples. The classification learner in 

MATLAB is so easy to understand and implement in classification application. Several data transformations were carried out 

to investigate their effect on diagnostic accuracy to identify which transformation method can achieve the highest diagnostic 

accuracy. The results indicated that the ensemble bagged classifier with raw data (data without any transformation) had the 

highest diagnostic accuracy of the transformer faults, reaching 83.4 %. 
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1. Introduction 

Diagnosing the transformer faults in the early stage avoids 
the loss of continuous operation of the power systems and 

loss of revenue of the electrical utility [1-4]. Dissolved gas 

analysis (DGA) is a standard method used to diagnose 

transformer faults, and it considers the preliminary test 

carried out to inspect the transformer state [5-7]. Several 

traditional DGA techniques use to interpret the transformer 

faults, some of them are based on the fixed rules, such as IEC 

60599 Code [8] and the IEEE C57-104 [9], and the others are 

the graphical DGA methods [10-13]. However, these DGA 

traditional techniques have poor diagnostic accuracy, and, in 

many cases, it fails to diagnose the type of transformer faults 

correctly [14-15].  

Recent work focused on enhancing the diagnostic accuracy 

of traditional and graphical DGA methods by combining 
them with artificial intelligence. Several artificial intelligence 

techniques are used with the conventional DGA techniques, 

such as artificial neural network [16-17], fuzzy logic [18-19], 

SVM [20-21], KNN [1, 6], and other methods [22-27]. 

Several researchers addressed the optimization techniques to 

enhance the diagnostic accuracy of the traditional DGA 

techniques. Taha et al. [28] proposed a new particle swarm 

optimization-fuzzy system (PSO-FS) platform to control the 

ratio limits of Rogers' Four ratios and IEC code DGA 

methods. The work was based on the ability of PSO to 

specify the ratio limits and corresponding rules to diagnose 

the transformer fault types correctly. Hoballah et al. [29] 

presented an efficient code matrix to diagnose the 

transformer faults. The FS was used to adjust the rules that 
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mapped the gas ratio limits for each fault type. Hybrid Grey 

Wolf Optimization (HGWO) is used to produce the code 

matrix, limiting the impact of uncertainties on the fault type. 

Sherif et al. [7] utilized the teaching learning-based 

optimization (TLBO) to adjust the gases concentration limits 

and ratio limits based on the work in [30]. An adaptive 

dynamic polar rose guided Whale optimization algorithm is 

used to improve the classification techniques' parameters to 

enhance the diagnostic accuracy of the transformer faults [2]. 

All the above DGA methods combined with the artificial 

intelligence or optimization methods were very complex to 

understand. Therefore, a classification learner tool in 

MATLAB is used to classify the transformer faults and the 

trained model to test any other samples. Ben Mahamed et al. 

[20] enhanced the diagnostic accuracy of the transformer 

faults using the support vector machine (SVM)-bat (BA) 

algorithm. The BA algorithm adjusted the model 

conditioning parameter "l" and penalty parameter "c" of the 

SVM to develop a maximum diagnostic accuracy rate. 

In this research, an Investigation of data normalized effect on 

the diagnostic accuracy of the transformer faults was 

developed. Several data manipulation was addressed using 

several data transformation methods. The main dissolved 

gases that were used in this study are Hydrogen (H2), 

Methane (CH4), Ethan (C2H6), ethylene (C2H4), and 

acetylene (C2H2). Six classes of the transformer fault types 

are proposed, which were labeled and categorized as 1, 2, 3, 

4, 5, and 6, referring to partial discharge (PD), low energy 

discharge (D1), high energy discharge (D2), low thermal 

(T1), Medium thermal (T2), and high thermal (T3) faults, 

respectively. Several classifiers from the classification 

learner tool in MATLAB were considered to select the best 

one that develops the highest diagnostic accuracy of the 

transformer fault. A total of 475 samples were used, 386 data 

samples were used to train the classifiers, and the other 89 

samples were used to test the trained classifier. The 386 raw 

data were used as training to check which classifier will 

develop the highest accuracy. Therefore, it was used with the 

data transformation to investigate its effect on the diagnostic 

accuracy of the transformer faults. The study results 

indicated that the ensemble bagged tree classifier develops 

the highest diagnostic accuracy of the transformer faults. 

2. Data Collection 

The trained and testing data are collected from the chemical 

laboratory of the holding electricity company in Egypt and 

literature. The collected samples' distribution was illustrated 

in Table 1 based on the type of fault and their sources. The 

data are classified based on the fault types as a total number 

of 43, 69, 115, 81, 24, and 54 for samples for partial 

discharge (PD), low energy discharge (D1), High energy 

discharge (D2), low thermal (T1), Medium thermal (T2), and 

high thermal (T3), respectively. In addition, there are 240 

samples from the chemical laboratory of the holding 

electricity company in Egypt [23], which are considered field 

data. In addition, most of the literature data is from [24]. 

Therefore, there are 89 data samples for testing purposes. 

Table 2 illustrates their source and fault types. According to 

fault types, the distribution of the data samples is 8, 13, 19, 

13, 7, and 29 for PD, D1, D2, T1, T2, and T3, respectively. 

The 89 data samples are new samples, which did not 

consider in the trained data. 

Table 1. Distribution of the training samples according to the 

fault types and the references 

Ref. PD D1 D2 T1 T2 T3 Total 

[31] 27 42 55 70 18 28 240 

[32] 9 24 48 0 0 18 99 

[33] 3 0 4 4 3 5 19 

[34] 1 0 5 2 0 1 9 

[35] 0 2 1 1 3 1 8 

[36] 1 1 2 1 0 1 6 

[37] 2 0 0 3 0 0 5 

Total 43 69 115 81 24 54 386 

Table 2. Distribution of the testing samples according to the 

fault types and the references 

Ref. PD D1 D2 T1 T2 T3 Total 

[31] 0 0 2 0 0 0 2 

[32] 4 3 4 1 0 0 12 

[37] 1 0 0 0 1 0 2 

[38] 1 0 0 4 2 14 21 

[39] 1 4 2 0 2 8 17 

[40] 1 0 4 4 0 2 11 

[41] 0 1 4 2 1 0 8 

[42] 0 3 1 2 0 1 7 

[43] 0 2 2 0 0 0 4 

[44] 0 0 0 0 1 2 3 

[45] 0 0 0 0 0 2 2 

Total 8 13 19 13 7 29 89 

 

3. Data Preparation 

The data preparation can be presented as follows, 

3.1. Logarithmic transformation 

The new dissolved gas concentration can be obtained in the 

first normalized case considering the logarithmic 

transformation used to reduce the margin between the 

samples' datasets. New dissolved gases can be developed as 

follows:   

                                                                      (1) 

Xn refers to the new gas concentration value of the dissolved 

gases based on the logarithmic transformation, and Xc the 

row dissolved gas magnitude for each of the main five gases 

(H2, CH4, C2H6, C2H4, and C2H2) for each sample. 

 

 

2.2. Total dissolved combustion gas (TDCG) transformation 
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The total dissolved combustion gases are the sum of the main 

five gases (H2, CH4, C2H6, C2H4, and C2H2), and the new 

normalized gas concentration can be developed by dividing 

each gas concentration by the TDCG. The total dissolved 

combustion gases can be presented as (2) 

                      (2) 

Equation 3 can compute the new normalized gas 

concentration as  

                                                                            (3) 

3.3. Data transformation based on the minimum and 

maximum of all sample data 

The normalized gas concentration data can be introduced by 

subtracting the gas concentration of each sample from the 

minimum value of all data concentrations and dividing the 

results by subtracting the minimum value of all gas 

concentrations from the maximum value of all gas 

concentrations in the sample space [46]. 

          

                                                                                             (4) 

where Min((H2, CH4, C2H6, C2H4, and C2H2)) and Max((H2, 

CH4, C2H6, C2H4, and C2H2)) refer to the lowest and largest 

values of all gases' concentration in the sample space, 

respectively. 

3.4. Data transformation based on the mean and standard 

deviation of each dissolved gas 

In this case of data transformation, each gas concentration is 

subtracted from the mean of the corresponding gas 

concentration data (i.e., each of H2 gas concentration and the 

mean of all H2 gas concentrations). The new gas 

concentration can be determined as in (5),  

                                                                             (5) 

where μ and s are the mean and standard deviation of each 

gas's main five combustible gases in each dataset sample, 

respectively. 

3.5. Data Transformation based on the maximum value of 

each gas of the five main gases 

Dividing each gas concentration by the corresponding 

maximum value of the gas data gave new gas' 

concentrations, i.e., all H2 concentration is divided by the 

maximum value of the H2 gas of all data sample. As a result, 

the new transformation ratios can be developed as follows: 

                                     (6) 

4.  Classification Techniques 

This section addressed several classification techniques, 

which gave transformer faults the highest diagnostic 

accuracy. These classification techniques included ensemble 

bagged tree; Ensemble boosted tree, Ensemble RUSBoosted 

tree, Weighted KNN, quadratic SVM, and linear SVM. 

4.1 Ensemble bagged tree 

Ensemble methods utilized multiple learning algorithms to 

enhance the predictive performance rather than the 

constituent learning algorithm alone [47]. A set of finite 

models constitutes machine learning ensembles, allowing 

more flexible structures between these models. For example, 

an ensemble bagging tree is a parallel learning method used 

for a two-class processing model, multiple classifiers, and 

regression [48-50]. As in Fig. 1., the ensemble bagging tree 

classifier can be constructed via preparing the data samples 

as training data in a random form. The decision tree is trained 

to get the basic model with or without the cross-validation, 

and the voting method is used to combine every basic model. 

The k-fold cross validation depends on dividing the trained 

data to groups, for examples (5 groups), then the first four 

groups were taken to train the model and the last group is for 

validation. In the second round the last one was added to the 

four groups and extract another group of data to use it as a 

validation group and so on. At the end of this process, the 

average of the classification accuracy of the 5 rounds was 

computed and considered the accuracy of the model. This 

process is carried out by the classification learner toolbox 

without any action of the user. 

A voting ensemble method combines the predictions from 

different models to get the final decision, where the models 

should be different because it utilizes all training data for 

train purpose.  A main concept of voting is generalizing 

better by compensating for the errors of individual model 

separately. 

  

Fig. 1 flowchart of ensemble bagging tree 

4.2 Ensemble boosted tree 
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Ensemble boost-tree algorithm is derived from deterministic 

gradient boosting's fundamental numerical tools, which can 

use for classification and prediction purposes [51]. The 

boosting model is used to boost the performance of a weaker 

classifier rather than random guessing [52]. Figure 2 

illustrates the boosting tree that generates only one model 

improved every time to reduce classification errors. The 

boosting models developed with few errors can be overfitting 

because they modified themselves [53]. 

  

Fig. 2. Ensemble boosting tree flowchart 

4.3 Ensemble RUSBoosted tree Algorithm 

RUSBoost tree algorithm is a combination of Boosting 

algorithm and under-sampling method. It divides the dataset 

into K parts. The initial weight of the sub-data set is the 

random weight of the total number divided by K. Then, the 

sub-data set is trained, and regularization is used to update 

the weights. Finally, a sub-data set repeats the training 

classifier was meeting the required conditions to select the 

best model [54-55]. 

4.4 Weighted K-Nearest Neighbors (K.N.N.) 

K-Nearest Neighbours (K.N.N.) considers one of the 

common classifiers of supervised machine learning. It uses to 

classify data input into pre-defined classes (k). First, the 

Euclidean distance function between pre-defined classes and 

each varying sample is computed, then KNN selects the 

minimum nearest neighbors according to each class. Finally, 

each sample assigns their class based on the nearest K 

neighbors [56-57]. The Weighted kNN is an updated version 

of KNN Several issues influence the performance of the kNN 

algorithm relating to the choice of the hyperparameter k. For 

example, smaller k results in more sensitivity to outliers, and 

larger k leads to many points from other classes, including 

neighbors. Figure 3 depicts the operation of KNN for 

separating among different classes of the data. 

 

Fig.3. KNN classifier based on k-parts 

4.5 Support Vector Machine (SVM) 

It is a machine learning tool using to separate the data into 

two-class of data via a hyperplane. This hyperplane must 

achieve the maximum distance between the points of each 

class; then, accurate classifying can occur. If any point lay 

outside the hyperplane margin, it belongs to a different class. 

Greater features lead to more difficult to separate among 

different classes. Figure 4 illustrates the margin condition of 

SVM. A good classification can take place when a large 

margin exists [58-59].  

 

Fig. 4. SVM algorithm indicating the margin separating two 

classes 

5. Results and Discussions 

In this section, the results of the diagnostic accuracy of the 

classification learners were reported. The diagnostic 

accuracy of each classifier was explained with and without 

transformation of the raw data. The main contribution of the 

current work is, which one of the data transformation will 

give the highest accuracy with the classifiers. 

In the MATLAB learner toolbox, the input and output data is 

identified in the workspace. The classification-learner 

command must be written in command page, then the 

classification toolbox is appeared. A new session was 

developed, then the input and output variables were 

identified. The learner assumed that the last column of the 

data is the output. The k-fold cross-validation was used as 

10, which leads to construct stable classification model. The 

all learners were selected and then the learner was run to get 

the classification accuracy for each classifier as in Fig. 5. 
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When all of the classifications learners were used with the 

data whether raw or normalized data, the results revealed that 

the Ensemble tree classifier developed the highest diagnostic 

accuracy of the transformer faults. Therefore, to reduce the 

explanation of all classifications’ results, only Ensemble 

bagged tree was shown. The results in Table 3 illustrates that 

the ensemble bagged tree develops the highest diagnostic 

accuracy (81.6%) of the trained data (386 Samples). Hence, 

the ensemble bagged tree will use as the best classifier in this 

case study. 

Table 3. Comparison between all of classifiers based on the 

raw data 

Classifier 
Diagnostic accuracy 

% based on raw data 

fine tree 72.5 

medium tree 86.4 

coarse tree 59.3 

linear discriminant 33.4 

quadratic discriminant 47.7 

linear SVM 66.6 

quadratic SVM 56.5 

cubic SVM 39.1 

fine Gaussian SVM 54.4 

medium Gaussian SVM 46.9 

coarse Gaussian SVM 35.8 

fine KNN 74.6 

medium KNN 71.2 

coarse KNN 51 

cosine KNN 68.9 

cubic KNN 70.2 

weighted KNN 77.2 

ensemble boosted trees 80.1 

ensemble bagged trees 83.4 

ensemble subspace Discriminant 33.4 

ensemble subspace KNN 73.3 

ensemble RUSBoosted trees 70.8 

 

In this manuscript the results of the classifier, which 

develops the highest diagnostic accuracy of the transformer 

faults were presented. To present the all results of all 

classifiers that developed highest accuracy, it need more and 

more pages, the idea of identifying the results were explained 

by the classifier that developed highest diagnostic accuracy 

(Ensemble bagged tree). 

5.1 Ensemble bagged tree results for data without 

normalization  

The raw data of the dissolved gases was taken as the first 

case in this study to compare its results with the normalized 

dissolved gases data. 

The ensemble bagged tree developed the highest accuracy 

classification when the raw data was used based on the 

results of Table 3. The classifying accuracy was 83.4%  when 

considering 5/5 features. The Five features refer to the 

number of input parameters, which are the five main 

dissolved gases (H2, CH4, C2H6, C2H4, and C2H2) in the 

current study. Figure 5 illustrates the distribution of the data 

samples as a scatter plot of the ensemble bagged tree. In the 

scatter plot, the name of the trained file appears as 

input_output_0, the number of observations (386 data 

samples). The number of predictors is 5 related to the five 

main gases. The six column refers to the output (transformer 

fault type), the fault types are categorized to 6 classes, and 

the cross-validation is 10. 

The correct diagnosis point is shown in Fig. 5 as a color 

circle, and the incorrect diagnosis point is color x. The x-axis 

(column 1) and y-axis (column 2) refer to the predictors of 

dissolved gases. It also showed the number of the correct and 

incorrect observations in the confusion matrix in Fig. 6. 

Figure 6a illustrates that the number of observations 

expressing PD is 43 samples. The ensemble bagged tree 

classifier correctly diagnoses 38 samples and incorrectly 

diagnoses five samples (two of them diagnose as D2 and the 

other three are T1). The correct diagnosis is in green color, 

and the red color refers to the incorrect diagnosis. The 

correct diagnose of each fault as in confusion matrix of Fig. 

6a is 38 samples from a total number of 43 samples for PD, 

49 samples out of 69 samples for D1, 105 samples out of 115 

samples of D2, 74 samples out of 83 samples of T1, 12 

samples out of 23 samples of T2, and 44 samples out of 54 

samples of T3. Fig. 6b indicated the classifier accuracy 

percentage of each fault type where 88 % is the accuracy 

percentage of correct diagnose of PD (38/43). The highest 

diagnostic accuracies are 91% for D2 and T1, and the lowest 

diagnostic accuracy is 50% for T2. The positive predictive 

values and negative predictive values were indicated in Fig. 

7. Figure 7 illustrates that the predicted class 1 referring to 

PD appeared 40 times, 38 times is correct with the accuracy 

of 95% for PD, and incorrect predict two times one with 

actual fault T1 and another one for T2 (3% for each T1 and 

T2). 

Similarly, class 6 referring to a high thermal fault (T3) 

appeared 51 times in prediction, 44 times for correct 

diagnosis with the diagnostic accuracy of 86%. There are 

seven times incorrect diagnoses with incorrect interpretations 

(1 time for D2, 3 times for T1, 3 times for T2) with the false 

diagnoses 2, 6, and 6%, respectively. Figure 8 can indicate 

the receiver operating characteristic (ROC). The marker on 

ROC depicts the current classifier performance where the 

false positive rate (FPR) is on the x-axis, and the true 

positive rate (TPR) is on the y-axis. Figure 8 illustrates that 

the FPR is 0.01, which indicates that 1% of the observations 

were assigned incorrectly to the positive class. The TPR is 

0.88, referring that the classifier assigns 88% of the 
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observations correctly to the positive class. When the ROC 

curve gives the right angle, it means perfect classifying 

results were obtained, and when it makes 45o, it refers to a 

poor classification result. The area can measure the overall 

accuracy of the classifier under the curve (AUC). The greater 

the AUC, the higher the classifier accuracy. Figure 8 

explained that the AUC is 98%, referring to better classifier 

performance. Table 4 compares between the classifiers for 

diagnosing the transformer faults that were developed 

highest accuracies based on the raw data. The results in 

Table 4 explains that the ensemble bagged tree develops the 

highest diagnosing accuracy of the transformer faults with 

83.4 % (322/386). The diagnostic accuracies of the other 

three classifiers (Ensemble boosted tree, ensemble 

RUSBoosted tree, and weighted KNN) are 80.1, 78, and 

77.2%, respectively, which are considered the highest 

diagnostic accuracy beyond the ensemble bagged tree 

classifier. The diagnostic accuracy of individual transformer 

fault types can be illustrated in detail in Table 4, computed 

by dividing the number of correct diagnoses per the total 

number of observations. The diagnostic accuracy of PD was 

88 (38/43), 81(35/43), 93(40/43), and 67% (29/43) for 

ensemble bagged tree, ensemble boosted tree, ensemble 

RUSBoosted tree, and weighted KNN, respectively. 

Similarly, the diagnostic accuracy for high T3 was 81 

(44/54), 78(42/54), 70(38/54), and 89% (48/54) for ensemble 

bagged tree, ensemble boosted tree, ensemble RUSBoosted 

tree, and weighted KNN, respectively. 

 

Fig. 5. Scatter plot of the ensemble bagged tree 

 

 

Fig. 6. Confusion matrix a) the number of correct and incorrect observations, b) true positive rates-false negative rates for 

ensemble bagged tree 
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Table 3. Comparison of different classifiers' accuracies for classifying the trained data without normalization  

Fault type/Classifier 

accuracy 
Ensemble bagged tree Ensemble boosted tree 

Ensemble 

RUSBoosted tree 
Weighted KNN 

PD 38/43 (88%)  35/43 (81%)  40/43 (93%)  29/43 (67%)  

D1 49/69 (71%) 43/69 (62%) 51/69 (74%) 40/69 (58%) 

D2 105/115 (91%) 104/115 (90%) 91/115 (79%) 91/115 (79%) 

T1 74/81 (91%) 72/81 (89%) 65/81 (80%) 75/81 (93%) 

T2 12/24 (50%) 13/24 (54%) 16/24 (67%) 15/24 (63%) 

T3 44/54 (81%) 42/54 (78%) 38/54 (70%) 48/54 (89%) 

Overall 322/386 (83.4%) 311/386 (80.1%) 301/386 (78%) 298/386 (77.2%) 

 

Fig. 7. Positive predictive values-negative predictive values 

confusion matrix of the trained sample using ensemble 

bagged tree 

 

Fig. 8. The ROC result of ensemble bagged tree 

Table 5 depicts the accuracy result of different fault types of 

the constructed model of ensemble bagged tree classifier 

based on new 89 data samples, which did not include in the 

trained data (386 samples). The diagnostic accuracy of each 

fault was as 87.5 % (7 corrected diagnose sample/8 

observations of PD), 30.77% for D1, 52.63 for D2, 84.61% 

for T1, 42.86% for T2, and 72.41% for T3. The overall 

diagnostic accuracy was 62.91% (corrected diagnosis 

sample/total tested samples =56/89). 

Table 5. The accuracy of the prediction of 89 samples is 

62.92% (56/89) based on ensemble bagged trees 

Fault type ACCURACY % 

PD (7/8) 87.5 

D1 (4/13) 30.77 

D2 (10/19) 52.63 

T1 (11/13) 84.61 

T2 (3/7) 42.86 

T3 (21/29) 72.41 

Overall accuracy (56/89) 62.92 

5.2 Data with normalization 

Several transformations of the trained data were carried out 

to investigate their effect on the diagnostic accuracy of the 

classifiers. The normalization of the data was taken place 

using five forms. The first form is taken the log of each gas 

concentration as in (1), the second normalization form was 

obtained, dividing every gas concentration in each sample by 

the total dissolved combustion gas of this sample as in (3), 

the third form was as in (4). The third form of data 

normalization was developed using each gas concentration 

column's mean and standard deviation as in (5). The final 

normalized form of the data can be obtained by dividing each 

gas concentration by the maximum value of the 

corresponding gas in (6). All the normalized data developed 

overall diagnostic accuracy lower than that developed with 

the raw data where the maximum diagnostic accuracy is from 

Eqn. (1) (Log (x)) as 82.9 %, but the raw data developed a 

diagnostic accuracy of 83.4%. It is seen from Table 6 that the 

diagnostic accuracy of fault type T2 was very poor, which 

did not exceed 55% and has an adverse effect on the overall 

diagnostic accuracy of the ensemble bagged tree classifier 

with the transformation data. 

Table 7 illustrates the results of the diagnostic accuracies of 

the ensemble bagged tree classifier of the constructed model 

based on a total of 89 data samples (testing data), which were 

not trained by the constructed model.  
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Table 6 explained the diagnostic accuracy among different classifiers that developed the highest diagnostic accuracy with the 

trained data. 

 Ensemble bagged tree 

Data state PD. D1 D2 T1 T2 T3 
Overall 

accuracy 

Eqn. (1) 95% (41/43) 68% (47/69) 94% (108/115) (88%) 71/81 50% (12/24) 76% (41/54) 82.9% 

Eqn. (3) 95% (41/43) 70% (48/69) 91% (105/115) 90% (73/81) 46% (11/24) 67% (36/54) 81.3% 

Eqn. (4) 86% (37/43) 70% (48/69) 90% (104/115) 89% (72/81) 54% (13/24) 71% (39/54) 81.1% 

Eqn. (5) 95% (41/43) 65% (45/69) 88% (101/115) 91% (74/81) 46% (11/24) 74% (40/54) 80.8% 

Eqn. (6) 91% (39/43) 71% (49/69) 90% (104/115) 88% (71/81) 50% (12/24) 74% (40/54) 81.6% 

 

Table 7. An Effect of data normalization method on the diagnostic accuracy of ensemble bagged tree classifier based on new 

89 data samples using as testing data 

 Ensemble bagged tree 

Data state PD. D1 D2 T1 T2 T3 Overall accuracy 

Eqn. (1) 87.5 38.46 68.42 84.61 14.28 86.2 69.66% (62/89) 

Eqn. (3) 25 0 15.79 100 0 6.9 22.47% (20/89) 

Eqn. (4) 87.5 38.46 68.42 84.62 14.29 89.66 70.87% (63/89) 

Eqn. (5) 87.5 38.46 63.16 84.62 42.86 72.41 66.29% (59/89) 

Eqn. (6) 87.5 30.77 68.42 84.62 57.14 62.07 64.04% (57/89) 

        

In this current work, different data transformation can be 

used as in Equations (1), (2), (4), (5), and (6) to enhance the 

diagnostic accuracy of the transformer faults. The data 

develop by equations (1) to (6) was used with ensemble 

bagged tree and compute the diagnostic accuracy of the 

classifier to investigate if the diagnostic accuracy was 

enhanced or not. Based on the diagnostic accuracy of the 

testing samples, it is obvious that the diagnostic accuracy of 

the testing samples (89) samples increased from 62.92% to 

70.87% using Eq. (4), therefore, the data transformation 

based on Eq. (4) enhanced the diagnostic accuracy rather 

than that in case of raw data. 

The results of Table 7 indicated that Eqn. (4) developed the 

best diagnostic accuracy of the testing samples (70.87%). On 

the other hand, equation (3) developed the worst diagnostic 

accuracy as 22.47%, then the data normalization based on 

Eqn. (3) can be ignored. It was evident from Table 7 that the 

diagnostic accuracy of D1 and T2 cause low overall 

accuracies of all data normalization methods. It is attributed 

to the interfaces between D1 and D2 and T2 and T3. 

For ensemble bagged tree, the data transformation for the 

current study was more efficient with the testing samples 

than that with the raw data, although the diagnostic accuracy 

of raw data is higher than that with the data transformation 

for the training samples. The overall accuracy of ensemble 

bagged tree based on raw data for testing samples was 

62.92%, but in case of data transformation the diagnostic 

accuracy was enhanced to 70.87 with Eq. (4). Therefore, the 

performance of the constructed ensemble bagged tree 

classifier based on Eq. (4) was better than using the ensemble 

bagged tree with raw data. The strength of the constructed 

model depends on its ability for correct diagnose with the 

test samples. 

6. Conclusions 

The traditional DGA techniques develop poor diagnostic 

accuracy of transformer faults. The classification learner 

toolbox in MATLAB presented several data classifiers to 

classification applications. In the current work it used the 

MATLAB classifier to identify the transformer fault types 

(PD, D1, D2, T1, T2, and T3) based on the concentration of 

the dissolved gases such as (H2, CH4, C2H6, C2H4, and C2H2). 

Based on the classifiers’ results with the raw data the 

ensemble bagged tree developed the highest diagnostic 

accuracy of the transformer faults, which is divided to six 

classes (PD, D1, D2, T1, T2, and T3). Data transformation 

was utilized to study its effect on the ensemble bagged tree 

classifiers' diagnostic accuracy and performance. This study 

summarized that the ensemble bagged tree classifier with the 

raw trained data developed the highest diagnostic accuracy of 

the transformer faults (83.4%), but the diagnostic accuracy of 

the test data is poor 62.92%. Therefore, the data 

transformation was used to enhance the diagnostic accuracy 

of the transformer faults based on several data transformation 

as in eqns. (1) to (6). The tested samples explained the data 

transformation based on Eqn. (4) presented the highest 

diagnostic accuracy with the ensemble bagged tree classifier 

(70.87%). Therefore, data transformation can be used to 

enhance the performance of the classifiers. 
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