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Abstract- A substantial amount of renewable energy (RE)-based electrical power is generated over the last ten years due to 
global warming issues. Solar photovoltaic (PV) is being incredibly utilized because of its boundless quality. However, the 
inherent intermittency of PV power production at high penetration level to the grid leads to complications related grid 
reliability, stability and transportable unit of electric power. A viable approach to addressing this problem is to develop a 
reliable power forecast model for the short-term horizon related to scheduling and transmission. Based on an existing forecast 
model built on genetic algorithm (GA)-optimized hidden Markov model (HMM), this paper implements the model validation 
process using more recent input dataset. Model evaluation is based on the computation of normalized root mean square error 
(nRMSE). As the validation result, HMM+GA is sufficient to accurately forecast PV Po under clear sky day (CSD) condition. 
Contrariwise, for cloudy days (CDs) presenting instantaneous changes in solar irradiance (Gs) between some hours of the day, 
HMM+GA adapted with a correction factor (x); articulated as HMM+GA+x; is adequate to forecast the Po more precisely when 
the average change in the absolute value of Gs ( ) in the morning ( ) is greater than 128% and/or when  in the 

evening ( ) exceeds 90%. Particularly, the average nRMSE of 2.63% showed that HMM+GA with or without x are suitable 

techniques for forecasting PV Po on an hourly basis. Therefore, the validation results are in harmony with those of the baseline 
models.  

Keywords Prediction, photovoltaic, power production, short-term forecasting, validation. 
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Nomenclature 
Acronym  
ANNs  
CDs             
CSD             
DMoC              
ELM  
EMA                 
FFNN  
GA  
GPR  
HMM  
kW  
MAPE               
MRE             
MW             
NBC                  
nRMSE             
nRMSEHMM       
nRMSEopt         
PSO  
PV                     
RBF  
RE  
SCADA                                     
STC                  
SVR  
VA                    

 
artificial neural networks 
cloudy days 
clear sky day 
data monitoring and operation centre 
extreme learning machine 
expectation-maximization algorithm 
feed-forward neural network 
genetic algorithm 
Gaussian process regression 
hidden Markov model 
kilowatts 
mean absolute percentage error 
mean relative error 
megawatts 
naïve Bayes classifier 
normalized root mean square error 
nRMSE of HMM 
nRMSE of optimized model 
particle swarm optimization 
photovoltaic 
radial basis function 
renewable energy 
supervisory control and data acquisition 
standard test condition 
support vector machine 
Viterbi algorithm 

Symbol 
    

 
   

                        

x                  
h                 
a                 
xe                 
xm                
Am               
Gs                
hu               
 ii                  
n                
Pa                
Pact             
 Pf      
PHMM       
Po  
Popt       
Prated  
Tamb       
Tm  
w                 
wd                

 
average percentage change in absolute value of solar 
irradiance 
average percentage change in absolute value of solar 
irradiance in the morning 
average percentage change in absolute value of solar 
irradiance in the evening 
correction factor 
module efficiency 
temperature coefficient (power) 
correction factor at evening 
correction factor at morning 
module area 
solar irradiance 
humidity 
illumination index 
number of observations 
actual power 
actual power output 
forecasted power 
HMM power output 
power output 
optimized power output 
rated power of PV system 
ambient temperature 
module temperature 
wind speed 
wind direction 

 

1. Introduction 

Because of fossil fuel depletion and climate issues, many 
incentives and energy regulations capable of advancing 
renewable energy (RE) deployment have been orchestrated 
in many countries. It is feasible to operate a 100% RE-based 
electric power grid [1]. Among the RE sources, solar 
photovoltaic (PV) can complement the conventional systems 
operating on fossil fuels. PV is incredibly utilized in 
locations with good solar resource because of its boundless 
quality and scalability. Additionally, PV systems are gaining 
popularity, considering their economic and environmental 
benefits [2]. With the falling prices of PV modules, it is 
projected that the PV power supply to modern electric power 
would increase further. However, the PV technology is 
confronted with some technical hitches predominantly at a 
high level of penetration where discontinuity is pronounced. 
Fluctuations in solar radiation received by PV panels is 
chiefly responsible for the unpredictability of PV power 
output [3]. This inherent unpredictability of PV power at 
higher level of penetration to the grid gives complications 
relating to a transportable unit of electric power and grid 
reliability in general [4]. It is one reason in developed 
countries why a high unit of electrical power is not allowed 
to be injected into the grid from RE sources. A viable 
approach to solving this problem is to develop a reliable 
power forecast model for the short-term horizon related to 
dispatching plan, scheduling and transmission [5-7]. Short-
term PV power output forecasting benefits include 
improvement in grid security, enhancement of power system 

control, and determinable energy pricing in advance. With 
sound forecasting models, customers’ dissatisfactions arising 
from power quality issues can be addressed.  

PV power output prediction has been implemented using 
a number of techniques such as artificial neural networks 
(ANNs) [8], Gaussian process regression (GPR) [9], support 
vector regression (SVR) [10], extreme learning machine 
(ELM) [11], cloud modelling [12], Grey theory [13], random 
forests [6], naïve Bayes classifier (NBC) [14], hybrid 
approaches [15-17], and Markov processes [18]. Intending to 
achieve more reliable forecasts, Eniola et al., 2019 [18] built 
a genetic algorithm (GA)-optimized hidden Markov model 
(HMM)-based forecasting tool for hour-ahead prediction of 
the power output of a 1.2kW PV system installed at the 
School of Renewable Energy and Smart Grid Technology 
(SGtech), Naresuan University, Phitsanulok, Thailand. To 
further consider the dependability of the model, this study 
implements the validation of the forecast models using a 
more recent input dataset acquired from the PV supervisory 
control and data acquisition (SCADA) system.  

2. Prediction Model Development 

With six months of historical data comprising of ambient 
temperature (Tamb), wind speed (w), and solar irradiance (Gs) 
as inputs, the power output of a 1.2 kW PV system is 
forecasted. The PV system is installed at the Energy Park, 
SGtech, Naresuan University (Lat. 16°47′ N, Long. 100°16′ 
E), Thailand. It consists of twelve thin-film silicon modules 
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manufactured by Kaneka Corporation in Japan. The system 
is equipped with SCADA and a monitoring device located at 
the data monitoring and operation centre (DMoC) from 
which historical and real-time data can be acquired. Figure 1 
represents the system’s equivalent circuit diagram and the 
electrical parameters and other information of the PV 

modules are presented in Table 1. It should be noted that 
electrical data is at standard test condition (STC): Gs 1000 
W/m2, spectrum air mass 1.5 and cell temperature 25 °C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Equivalent circuit diagram of the 1.2 kW PV system.    

Table 1. Electrical specification of PV modules and other system information 

S/N Parameter Value  Unit 
1. Array rating 1.2  kW 
2. Panel rating 100 W 
3. Number of panels 12 - 
4. Panel model U-EA 100 - 
5. PV technology Thin-film m-Si - 
6. Maximum power (Pmax) 100 W 
7. Minimum value of Pmax 95.0 W 
8. Open circuit voltage (Voc) 71.0 V 
9. Short circuit current (Isc) 2.25 A 
10. Voltage at Pmax (Vmpp) 53.5 V 
11. Current at Pmax (Impp) 1.87 A 
12. Temperature coefficient (power) -0.35 %/K 
13. module efficiency (h)  8.2 % 
14. Dimension (W×L×T) 1210×1008×40 mm 
15. Array area (Am) 14.64 m2  
16. Module manufacturer  Kaneka corporation, Japan -  
17. Inverter size/type 1×2.5, Leonics/Apollo G-303 kW 
18. Tracker Nil - 
19. Array tilt/Azimuth Fixed, 17°/0 - 
 

Before designing the forecast model, the forecast data is 
filtered to 1-hour timestamp followed by data refinement. Its 
purpose is to compensate for negative or missing data points 
by substituting them with their monthly average values. The 
error metrics used in this study for the forecast model 
performance evaluation necessitate preprocessing the dataset 
to exclude zero-value data occurring at night and early hours 
to avoid absurd error values at the validation phase. 

Afterwards, the entire dataset is partitioned into two quotas. 
The forecast model is trained using 95% of the data and the 
remainder is employed for model testing. In very short-term 
PV Po forecasting, Gs and module temperature (Tm) are the 
best variables to accurately forecast swift PV energy 
variations due to Tm significant effect on voltage which 
consequently affects PV Po [12, 19]. In this study, Tamb is 
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used to compute Tm based on the mathematical 
transformation model expressed in Eq. (1) [12, 20].                 

          (1)  

where Tm and Tamb are module and ambient temperature 
respectively, measured in °C, Gs is solar irradiance in W/m2 

and w is the wind speed in m/s. 

Estimating parameters and training the Po forecast 
model using HMM requires determining the likelihood of 
observation sequence, predicting the next emission in the 
sequence of observations, and finding the most probable 
underlying explanation of the observation sequence. The 
problems aforementioned can be addressed using the 
forward-backward algorithm, Viterbi algorithm (VA) and the 
Baum-Welch algorithm, sometimes referred to as 
expectation-maximization algorithm (EMA) [21, 22]. As 
parameter categorization is required for the HMM-based 
forecast model design, Gs data is classified according to 
some rules. Table 2 exhibits the conventions adopted in 
categorizing Gs and the procedure resulted in five states 
representing the very clear sky, clear sky, partial cloud, 
cloudy and very cloudy. The emissions are then classed into 
three distinct levels: high, moderate, and low generations. 
HMM latent variables express to Markov chain and are 
discrete in nature. The next step is to equate inputs to 
observations and outputs to states so that the forecast model 
can learn from the output-input relationship. This process is 
known as supervised learning, and forecasts can be made 
based on models of observed data. The training dataset is 
sequenced to predict with the HMM, and the model 
parameters and the transition matrix are estimated. Notably, 
the computation of the transition matrix is carried out with 
the HMM simulation tool. After all input data have been 
preprocessed, the predefined state and emission are 
characterized according to the previous conventions. The 
learning process of the forecast model requires representing 
state and emission by Gs and historical Po of PV, 
respectively. The next step is state and emission sequencing. 
With programming codes explicit to the HMM training 
process in our simulation tool and an optimal number of 
iterations of the EMA specified, each transition matrix 
element can be estimated. In this study, after specifying 500 
iterations of the EMA in training the forecast model; the state 
probability distribution matrix A is as given below: 

 

 

 

 

Table 2. Classification of Gs 

Gs Class State 
> 800 very clear sky  5 
≤ 800 clear sky 4 
≤ 600 partial cloud 3 
≤ 400 cloudy  2 
≤ 200 very cloudy 1 
 
Matrix A is of order 5-by-5 as there are five discrete states. 
Element aij denotes the probability distribution of 
transitioning from state i to j. Thus, aij ≥ 0 and  
for 0 ≤ i ≤ 1. The highest probable state sequence that is 
utilized to make the next hour Po prediction is given by 
Viterbi deciphering. To make predictions, the model deploys 
the power formula expressed in Eq. (2) [23].  To obtain Po at 
hour t+1, Tm and Gs at hour t are passed as inputs unto the 
forecast model. As determined in the HMM-based Po 
forecasting steps described in Fig. 2, the Po forecasting is 
carried out using the HMM toolbox in our simulation 
software. 

                      (2) 
where Po is the power output in kW, h is the module 
efficiency in %, Am is module area in m2, and α is the 
temperature coefficient (power) measured in %/K. The 
optimization of parameters and forecast model enhancement 
is built on GA. All input variables are initialized, and the 
fitness function is created. The fitness function is expressed 
as the sum of squares of the difference between fitted values 
and actual Po (Pact). The GA-based optimization process 
entails passing a function handle to the fitness function 
alongside the number of variables in the problem. To ensure 
that the region of relevance is scrutinized by GA, preselected 
lower and upper bounds are passed as arguments after the 
number of variables is passed. The optimization process is 
terminated when the fitness value becomes lower than the 
function tolerance. Optimized parameters are used to modify 
the HMM to achieve a kind of GA-optimized HMM. At the 
model testing phase, abnormalities perceived to have ensued 
from abrupt changes in Gs are smoothened with a correction 
factor (x), which can either occur in the morning as (xm) 
and/or evening time as (xe). x is computed using an interior-
point algorithm, a procedure that requires a fitness 
assignment and a constraint set by error definition, bounds 
whose upper value is fixed at the corresponding Pact, and 
parameter initialization. Data analytics provided the basis 
upon which x must be applied. From the results, it can be 
deduced that when the average change in the absolute value 
of Gs ( ) is more than 128% in the morning time and/or 

when  in the evening exceeds 90%, then the application 

of x becomes inevitable. In this study,  in the morning 

and evening time are respectively articulated as  and 

. Nevertheless, the GA optimization process is 

considered non-iterative in prediction cases that necessitate 
the use of x. Finally, in line with this study’s objective, 
which is to further investigate the dependability of our model 
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by using a more recent input dataset obtained from the same 
SCADA system, the validation results are presented in the 
next section. The flowchart of the PV Po forecast procedure 
described in this section is presented in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The flowchart of the 1.2 kW PV Po forecast procedure [18]. 

 

3. Model Validation Results 

In this study, the forecast model validation is 
implemented; using input dataset for March to June 2019; 
based on the computation of normalized root mean square 
error (nRMSE) and mean absolute percentage error 
(MAPE) given as follows:  

                  (3)   

                   (4)                                                              

where Prated is the PV rated power measured in kW, Pa and 
Pf are actual and forecasted power respectively, measured 
in kW, and n is the number of observations. The two error 
metrics compare the forecasted Po and Pact values. Forecast 
models with good performance should present low 
nRMSE and MAPE. Figure 3a presents the results of Po 

model validation of the day 14.03.2019 using HMM and 
HMM+GA. The HMM Po, expressed as PHMM, overshoot 
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is noticeable almost over the entire hour of the day. The 
peak overshoot is about 20-24% of Pact occurring at the 
hour of 13.00. Improving the Po forecasting close to the 
Pact, requires predicting Po with HMM+GA; expressed as 
Popt and the results are seen to match almost with the Pact, 
except for hours between 11.00 and 13.00 indicating slight 
under-forecast. To consider the error of HMM and 
HMM+GA (Fig. 3b), the values of nRMSEopt are well 
below that of nRMSEHMM. The HMM is observed to over-
forecast the data points with an ensemble nRMSE of 
7.44%, whereas the ensemble nRMSE of GA-integrated 
HMM is reduced to 2.44%.   

 

 
Fig. 3 (a) Po forecast and (b) nRMSE of models on 

14.03.2019 using HMM and HMM+GA. 

Similarly, Fig. 4a presents the results of Po model 
validation of the day 19.03.2019 based on HMM and 
HMM+GA. The overshoots of PHMM manifest between 
11.00 and 15.00 hours. The peak overshoot is about 12-
15% of Pact occurring at the hour of 13.00. Improving the 
Po forecasting close to the Pact, requires predicting Po with 
Popt, and the results can be observed to reasonably 
approximate the Pact. Considering the error of HMM and 
HMM+GA (Fig. 4b), the values of nRMSEopt are 
noticeably lower than that of nRMSEHMM. The HMM is 
observed to over-forecast the data points with an ensemble 
nRMSE of 5.69%, whereas the ensemble nRMSE of GA-
integrated HMM is reduced to 1.62%. 

The HMM and HMM+GA Po forecast validation on 
21.03.2019, is as shown in Fig. 5a. The Po forecasting 
using HMM is slightly higher above Pact, particularly 
between 10:00 and 13:00. The over-forecast of the HMM 
is reduced with the HMM+GA model which forecasts the 

Popt to match almost with the Pact. Error consideration 
based on nRMSE (Fig. 5b) shows that nRMSEopt values 
are well below those of nRMSEHMM. The HMM gives a 
maximum nRMSE of about 7% between 9:00 and 10:00, 
whereas the optimized model presents a maximum 
nRMSE value of nearly 5% at about 9:00 hour. The 
ensemble nRMSEHMM of 4.43% as against 2.71% for 
nRMSEopt further justifies the overshooting nature of the 
HMM. 

 

 
Fig. 4 (a) Po forecast and (b) nRMSE of models on 

19.03.2019 using HMM and HMM+GA. 

 

The HMM and HMM+GA Po forecast validation on 
17.05.2019, is as shown in Fig. 6a. The Po output 
forecasting using HMM is higher above Pact, over the 
entire time considered. The over-forecast of the HMM is 
reduced with the HMM+GA model which forecasts the 
Popt more precisely. Error consideration based on nRMSE 
(Fig. 6b) shows that nRMSEopt values are well below those 
of nRMSEHMM. The HMM gives a maximum nRMSE of 
about 14% about 11:00 hour, whereas the optimized model 
presents a maximum nRMSE value of nearly 4% around 
the hours of 9:00 and 16:00. The ensemble nRMSEHMM of 
8.68% as against 2.85% for nRMSEopt further explains the 
overshooting nature of the HMM. 
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Fig. 5 (a) Po forecast and (b) nRMSE of models on 

21.03.2019 using HMM and HMM+GA. 

Figure 7a presents the results of Po model validation 
of day 27.03.2019 based on HMM and HMM+GA. As a 
CD, the Pact fluctuates over the entire hours of the day. The 
Popt is closer to Pact than PHMM, particularly between the 
hours of 10.00 and 15.00 with forecast peaks at about 
10.00 and 13.00 hours. Nonetheless, PHMM and Popt do not 
approach Pact at 17:00 due to the influence of instantaneous 
change in Gs. According to their nRMSE curve (Fig. 7b), 
both nRMSEs present the highest values. In addition, 
nRMSEopt and nRMSEHMM have the highest values of 
about 34-36% and 44-46% respectively occurring at 17.00 
hour. This confirms that HMM and HMM+GA models 
have a limitation for instantaneous changes in Gs. Based 
on the criterion established in the forecast model 
development section for the use of x in the evening time, 
the abnormality was corrected with a value of 0.25. 

Following the use of x, both PHMM and Popt present 
more reasonable Po curves in Fig. 8a. To determine the 
influence x-adapted HMM and x-adapted HMM+GA have 
on the nRMSE (Fig. 8b), it can be observed that 
nRMSEHMM and nRMSEopt at 17.00 reduced close to about 
3% and 1% respectively. The reduced peaks of 
nRMSEHMM and nRMSEopt and their respective ensemble 
nRMSE values decreased to 4.97% and 2.61%, further 
reinforce the importance of x. To compare HMM and 
HMM+GA adapted with and without x (Fig. 7 and Fig. 8), 
the abnormalities and nRMSE are significantly reduced 
with the use of x, but also the values of nRMSE of x-
adapted HMM and HMM+GA are also less fluctuating 
than without the x. The nRMSE of HMM+GA+x relatively 
maintains a range between 0-5%. 

 

 
Fig. 6 (a) Po forecast and (b) nRMSE of models on 

17.05.2019 using HMM and HMM+GA. 

 

 
Fig. 7 (a) Po forecast and (b) nRMSE of models on 

27.03.2019 using HMM and HMM+GA. 
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Fig. 8 (a) Po forecast and (b) nRMSE of models on 
27.03.2019 using HMM+x and HMM+GA+x. 

Figure 9a presents the result comparison of Po forecast 
models for 24.05.2019 using HMM+x and HMM+GA+x 
on cloudy sky condition. The computed value of x used to 
adapt the abnormality occurring at 17.00 is 0.25. Po 
forecasted with HMM+x presents overshoot noticeably 
between 11:00 and 16:00. To improve the Po close to the 
Pact, Popt was predicted based on HMM+GA+x model, 
which is observed to forecast Po more accurately. To 
consider the forecast error (Fig. 9b), the ensemble 
nRMSEopt values of 2.36% for the HMM+GA+x is lower 
than the 8.67% nRMSEHMM of the HMM+x; especially the 
value of HMM+GA+x relatively maintains a range 
between 0-4%. 

Figure 10a presents the results of Po forecast for the 
day 19.06.2019 based on cloudy sky condition using 
HMM+x and HMM+GA+x models. The abnormalities 
occurring at 8:00 and 17.00 hours are adjusted with x 
values of 0.40 and 0.25, respectively. PHMM and Popt 

present a good agreement with Pact exclusive of the hours 
between 10.00 – 12.00 and 14.00 hour. The improvement 
in Po prediction with HMM+GA+x can be perceived by 
considering the nRMSE curves shown in Fig. 10b. 
Although the under-forecast of HMM+GA+x between 
10.00 and 12.00 presents a maximum nRMSEopt of 
approximately 7.5%. Notwithstanding, nRMSEHMM 

globally peaks at around 8.5% and HMM+GA+x also 
presents a lower ensemble nRMSE value of 3.82% against 
HMM+x whose error value is 4.94%. 

 

 
Fig. 9 (a) Po forecast and (b) nRMSE of models on 
24.05.2019 using HMM+x and HMM+GA+x. 

 

 
Fig. 10 (a) Po forecast and (b) nRMSE of models on 
19.06.2019 using HMM+x and HMM+GA+x. 
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At the validation step, the HMM and GA-optimized 
HMM performance with or without x on hour-ahead Po 
forecasting of the PV system under different conditions of 
Gs are synopsized in Table 3. The computation of nRMSE 
and MAPE error metrics consolidate the prediction 
strength of the standalone model (HMM) and GA-
enhanced model (HMM+GA).  Both nRMSE and MAPE 
decreased when GA is integrated with HMM, 
corresponding to the class of the day under CSD 
consideration. This reflects PV power forecasting with 
GA-integrated HMM has a higher Po prediction capability 
than ordinary HMM, as the results of the optimized 
forecast parameters. In CD consideration, the use of x; 
based on the established forecast criteria in section 2 
further improves the accuracy of the forecast as expressed 
in the percentage of nRMSE and MAPE. These criteria 
were developed based on data analytics. As the 
instrumental decision support, if  is more than 

128%, x in the range of 0.33 – 0.41 is suitable. Then again, 
if  exceeds 90%; applicable xrange between 0.24 - 

0.35. The HMM with or without x presents the average 
nRMSE and MAPE larger than HMM+GA with or without 
x. Besides, the average nRMSE and MAPE of HMM+GA 
with or without x is 2.63% and 6.05%. As a result, the 
incorporation of GA and x are able to improve the 
forecasting accuracy of the hour-ahead Po of the PV 
system based on the optimized forecast parameters. For all 
the days used in the validation process, the proposed 
method outpaced the ordinary model (HMM) with or 
without x. It can be observed, from Table 3, that x is 
inconsequential for a typical CSD; and for CDs in which x 
is determined, its adoption may be in the morning and/or 
evening time. 

Table 4 presents a synopsis of the previous studies on 
short-term PV Po forecasting considered. To compare with 
other models developed in former studies, Lahouar et al., 
2017 reported a 24 hour-ahead Po forecasting of a 500 kWp 
PV system, using Random forests based on bagging 
algorithm with and without Gs; given a MAPE of 28.97% 
in April [6] as one of the results. In the study conducted by 
Raza et al., 2017 [24], Autoregressive predictor; Radial 
Basis Function network enhanced with Particle Swarm 
Optimization (RBF+PSO), and PSO-augmented Feed-
forward Neural Network (FFNN+PSO) were deployed as a 
multivariate ensemble framework to make seasonal 24 
hours and 7 days-ahead Po prediction of a 2.14 MWp PV 
plant in Australia. The findings present an nRMSE of 
9.55% and 9.51%, in the spring season, for CSD and CD, 
respectively. Zhong et al., 2017 predicted the power 
production volume of a PV system based on PSO boosted-
multivariable Grey theory method; and the model 
validation with PSO gives a Mean Relative Error (MRE) 
reducing from 7.14% to 3.53%, equivalent to 
approximately 51%  decrease [13]. In a previous study 
carried out in Thailand by Eniola et al., 2019, the power 
output of a 1.2 kWp PV system was forecasted an hour-
ahead based on the following models: HMM, HMM+GA, 
HMM+x, and HMM+GA+x; depending on the class of day 

under consideration. The authors reported an average 
nRMSE of 2.33% for HMM+GA with or without x, 
maximum MAPE of 12.33% occurring in April, maximum 
nRMSE of 2.55% and 4.29% for CSD and CD 
respectively, and HMM+GA together with or without x 
presenting around 54% decline in nRMSE at the testing 
phase. The testing results reflected that HMM+GA 
predicts Po for CSDs more precisely, whereas 
HMM+GA+x gives the best Po forecast for CDs, 
supporting the consideration of their proposed prediction 
model as a suitable method for hour-ahead Po forecasting 
of the PV plant [18]. The results of this current study built 
on the technique developed by Eniola et al., 2019 [18], and 
proven with more recent input parameters; indicated an 
average nRMSE of 2.63% for HMM+GA with or without 
x, maximum MAPE of 7.95% occurring in March, 
maximum nRMSE of 2.85% for CSD and 3.82% for CD, 
and HMM validation with GA together with or without x 
gives about 58% decline in nRMSE. Considering the trend 
of the present results discussed above, it is worth 
mentioning that our validation results are in good 
agreement with those obtained at the model testing phase 
reported by Eniola et al. [18].  

Accordingly, as HMM+GA is capable of predicting 
the Po for CSD more accurately, whereas HMM+GA+x is 
efficient in practically forecasting PV Po under CD 
condition; GA-reinforced HMM with or without x can be 
considered a reasonable method particularly for the hour-
ahead prediction of the Po of a PV system. With this 
model, energy planning and management can be 
ameliorated. Emphatically, the present model can be 
relevantly deployed in practical cases at locations with 
comparable meteorological data with Thailand’s. 
Nonetheless, model implementation in sites with different 
weather patterns may necessitate the use of no less than six 
months of the historical dataset in retraining the proposed 
forecast model. Furthermore, the approach of this study is 
deemed practically effective and beneficial considering 
that out-of-sample data obtained from a PV power plant in 
Thailand have been deployed as inputs. For all the 
conditions reflected, the model behavior is in good 
agreement with the current validation results. As solar 
resource is highly stochastic, the models articulated in the 
present study can be employed to precisely guesstimate the 
Po of PV in advance. It can be utilized for decision-making 
on electric power transmission, electric load drop or gain, 
vis-à-vis having reasonable control overpower quality 
problems, including frequency deviation from the rated 
value when demand is higher than supply. Besides, in 
decentralized electricity markets with power bidding 
processes, plant owners and grid operators may incur 
additional cost in the form of penalty if they fail to supply 
electric power within stipulated tolerance bands. This extra 
cost can be minimized with the models proposed in this 
study. 

Although, this research did not consider the effect of 
seasonal variation on forecast model performance. 
Nevertheless, previous tests and this experimental 
validation using out-of-sample datasets recorded at 

s m
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different times in year 2018 and 2019 showed that the 
model performances are consistent. It is not incredible that 
the model results will be stable if the training data size is 
six months or more and the meteorological variables 
follow a similar distribution. Also, the impact of the order 
of the state probability distribution matrix A on the 
forecast model behavior is not investigated. However, if 
the number of state increases from 5 to a positive integer 
N, matrix A will remain a square matrix, all the element 
across each row of matrix A sum up to 1; each element of 

matrix A ranges between 0 and 1 inclusive; but the order of 
matrix A will increase from 5-by-5 to N-by-N. In such a 
case, since more states will translate to smaller state 
interval, it may not be incorrect to anticipate an entirely 
distinct forecast model capability. Therefore, future work 
would examine the effect of the order of the state 
probability distribution matrix on forecast model 
performance. 

 

Table 3. Forecast model validation performance for March to June 2019 

Date Class Models xm xe 
nRMSE [%] MAPE [%] 
PHMM Popt PHMM Popt 

14.03.2019 CSD HMM/HMM+GA n/a n/a 7.44 2.44 24.84 7.95 
19.03.2019 CSD HMM/HMM+GA n/a n/a 5.69 1.62 12.39 3.02 
21.03.2019 CSD HMM/HMM+GA n/a n/a 4.43 2.71 9.74 5.87 
17.05.2019 CSD HMM/HMM+GA n/a n/a 8.68 2.85 16.79 5.56 
27.03.2019 CD HMM+x/HMM+GA+x n/a 0.25 4.97 2.61 12.37 6.91 
24.05.2019 CD HMM+x/HMM+GA+x n/a 0.25 8.67 2.36 18.35 5.57 
19.06.2019 CD HMM+x/HMM+GA+x 0.40 0.25 4.94 3.82 12.33 7.47 
Average     6.40 2.63 15.26 6.05 
  

Table 4. Forecast model result comparisons  

Researchers Lahouar 
et al., [6]. 

Raza 
et al., [24]. 

Zhong 
et al., [13]. 

Eniola 
et al., [18]. Present study 

Location Tunisia Australia China Thailand Thailand 
Study year 2017 2017 2017 2019 2019 
PV technology -- -- -- Thin-film Si Thin-film Si 
PV Capacity 500kWp 2.14MWp -- 1.2kWp 1.2 kWp 

Training data 

Gs Gs Gs Gs Gs 

-- -- Tamb Tamb Tamb 
w w -- w w 
wd -- -- -- -- 

Tm Tm -- Tm Tm 

-- Po -- Po Po 

hu hu -- -- -- 

-- -- ii -- -- 

Method(s) 
Random forests using 
bagging algorithm 
with and without Gs. 

Autoregressive 
predictor + 
(RBF+PSO 
predictor) + 
(FFNN+PSO 
predictor). 

Multivariable 
Grey theory + 
PSO. 

HMM 
HMM+GA 
HMM+x 
HMM+GA+x 

HMM 
HMM+GA 
HMM+x 
HMM+GA+x 

Data size -- 12 months -- 6 months 6 months 
Forecast horizon 24 hours 24 hours 24 hours 1 hour 1 hour 

nRMSE -- 9.55% - CSDs 
9.51% - CDs -- 

2.33% avg. 2.63% avg. 
2.55% max. -CSDs 
4.29% max. - CDs 

2.85% max. - CSDs 
3.82% max. - CDs 

MAPE 28.97% - April -- -- 12.33% max. -April 7.95% max. - March 
% Reduction -- -- MRE (~51%) nRMSE (~54%) nRMSE (~58%) 
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4. Conclusion 

Herein, the present study further validates the method 
for hour-ahead Po forecasting of a PV system based on 
HMM and HMM+GA together with or without correction 
factor (x), as projected by Eniola et al., 2019 [18]. For 
CSDs, HMM+GA can predict the Po with high accuracy. 
Whereas days corresponding to CDs require x to adapt 
HMM+GA when  and/or . In 

all days used in the validation process, HMM+GA and 
HMM+GA+x give more potential forecast than HMM and 
HMM+x. The trend of the results from this study showed 
that our validation results are in harmony with those 
obtained at the model testing phase reported by Eniola et 
al. [18]. Considering the forecast models’ average nRMSE 
and MAPE of 2.63% and 6.05%, respectively, GA-
optimized HMM with or without x reflects a suitable 
technique to forecasting PV Po on an hourly basis. Grid 
operators and PV power plant owners could implement this 
model to address customer’s dissatisfaction over power 
quality issue, reduce the cost of energy reserve, and 
determine the cost of energy beforehand.  
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