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Abstract- This paper proposes a novel approach using a non-linear least squares method for fitting optimally statistical data 
points to estimate optimal set-points of various local Volt/var droop control schemes implemented into wind generators (WGs) 
in distribution networks. The approach utilizes the Monte Carlo simulation and considers the variation of wind speed, 
electricity demand, and outage duration of WGs as uncertainties to evaluate the effects of each local scheme regarding the 
resulting statistical attributes of voltage variation profiles and total active power losses. The approach's effectiveness is 
demonstrated on a radial distribution network in Germany with four identical 20 kV feeders. 

Keywords Distribution networks, loss reduction, Mean-variance mapping optimization. 

 

1. Introduction 

Nowadays towards the smart grids, most voltage control 
methods require a high level of communication between the 
components of the system, thus incurring high costs in its 
implementation. Since each method has its benefits and 
drawbacks and an engineering solution based on the 
equilibrium between cost and technical impact is needed, 
local control methods such as constant power factor control, 
direct voltage control, or Volt/var droop control were still 
being applied to the current distribution networks.  

The local Volt/var control methods have been drawn 
significant attention from many researchers [1]-[15] and 
widely admitted in most grid codes. For example, Verband 
Deutscher Elektrotechniker (VDE) in Germany proposed 
several Volt/var control methods [16] such as the reactive 
power-voltage curve Q(V), idle power curve as a function 
Q(P) of reactive power (Q) with respect to active power 
injection (P), fixed reactive power, and fixed power factor 
(PF). Among them, the curve based methods (i.e. Q(V) and 
Q(P) curves) are local Volt/var droop control strategies. 
Their specification of set-points is possibly preset in the 
course of planning and adjusted via remote control 
technology or manually. The voltage droop control with its 

particular advantages is a preferable choice of DNOs and it is 
officially stipulated, for example, in the UK grid code [17]. 

Several studies have proposed different Volt/var droop 
control methods, but, in most of the cases, they were focused 
on a deterministic framework. The authors in [6] propose a 
variable droop gain control scheme that mitigates voltage 
variations at the point of common coupling (PCC). A 
centralized controller is proposed in [7] to adjust the V-Q 
characteristics of local controllers. In [8], the approach of 
effectively utilizing the reactive power generation capacity of 
other inverters closer to the critical bus is proposed to 
regulate the critical bus voltage while satisfying the PF 
requirements. The authors in [14] investigate a small wind 
turbine equipped with the voltage based droop control 
strategy to obtain a stable microgrid operation. In [15], a 
droop control method based on modified P&O algorithm 
is proposed to obtain the maximum power generated by 
intermittent energy sources such as PV systems or wind 
turbines. 

In work [18], it is found that among local control 
methods the voltage droop control generally provides better 
performance in voltage variation, the regulating range of on-
load tap changer (OLTC), and minimization of the losses.  
The voltage droop control method is commonly defined with 
a fixed gain which is the ratio of the steady-state change in 
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voltage and reactive power. However, in specific cases of a 
certain network, it is still a big challenge in how to specify 
optimal gains for local controllers. 

In this paper, the approach based on a probabilistic 
framework is presented to estimate the optimal characteristic 
curve of Volt/var droop control methods. The optimization 
objective is active power loss minimization while satisfying 
operating constraints such as the voltage, loading, and 
reactive power limits. Monte Carlo (MC) simulation is 
selected to consider significant uncertainties in inputs such as 
loads, wind speed, and outage of WGs. A heuristic 
optimization algorithm is adopted to take account of optimal 
data points of WGs’ reactive power supply. Finally, the 
approach based on non-linear least squares is used to 
approximate the optimal characteristic curve which fits best 
the optimal data points. 

To demonstrate the efficiency of the proposed approach, 
the following droop control methods are investigated in this 
paper. They are defined in basis on four possible 
characteristics stipulated in the grid codes [16] and [17], as 
follows: 

Ø Reactive power versus voltage Q(V) 
Ø Power factor (PF) versus voltage PF(V) 
Ø Power factor versus active power PF(P) 
Ø Reactive power versus active power Q(P) 

This paper is set out as follows: Section II describes the 
methodology of the proposed method as well as its crucial 
parts in detail. Simulation results and discussion are given in 
Section III, and conclusions are drawn in Section IV. 

2. Proposed Methodology 

The framework of the proposed methodology is 
schematically illustrated in Fig. 1. The methodology begins 
with specifying probabilistic distribution functions (PDFs) of 
input variables such as power generation of WGs and loads, 
by depending on their historical measurement data. Next, 
each trial input scenario sampled from the PDFs defines an 
operating state. Optimal control variables, reactive power of 
WGs, are then determined by implementing a heuristic 
optimization algorithm into load flow calculation. Necessary 
data making up an output scenario is stored at every MC trial 
of a total of 12,500 trials (e.g. Ntr =12,500) in this paper. 
Corresponding to each type of droop control method, data 
points of a different pair of two variables taken from the 
output scenarios are used. Then these points are 
approximately fitted by using the approach of non-linear 
least squares to create the optimal curve from a probabilistic 
point of view. A pair of two variables of the reactive power 
(Q) and the voltage (V) is graphically displayed as an 
example in Fig. 1. 

2.1. Distribution Network Model 

Load demand variability and WG output are two types of 
input uncertainties considered in this paper. While load 
demand is considered as a continuous process, WG output 
involves either a continuous process, wind speed variability, 

or a discrete process, failure/operation status of WG.  There 
is the fact that kinds of these continuous uncertainties 
characterized through a normal probability distribution 
function (PDF) often supply a very low efficiency. Thus, this 
paper aims at highlighting a more effective technique, 
Gaussian mixture model (GMM) approximation, to model 
such variability.  

 
Fig. 1. The framework of the proposed methodology. 

Mathematically, the GMM model is represented as a 
weighted sum of M component Gaussian probabilistic 
densities [19]-[20]: 

 

 
(1) 

where x denotes D-dimensional continuous-valued data 
vector, λ is chosen from the set of parameters 

, , i=1,…, M, are the mixture 
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with  and  is a mean vector and a covariance matrix, 
respectively. The mixture weights satisfy the constraint that 
the sum of all the weights must equal one. 

A special routine, written to perform mixture reduction 
and merging [19], together with the Matlab functions 
gmdistribution.fit (expectation-maximization algorithm - 
EM) and chi2gof (Chi-square goodness-of-fit tests) [21], was 
used in this paper to identify and validate the parameters of 
the GMMs. 

 

 

2.2. PDF of Load Demand 

GMMs are selected to construct PDF of load profile. 
Firstly the load profile must be required and is calculated as 
proposed in [19]. Based on available data of load demand for 
different classes of consumers in each bus, load profile 
indexes (LPIs) are defined as follows: 

  (3) 

  (4) 

where  and is active power and reactive power load 
at the ith bus, respectively.  is the time instances 
corresponding to every sampling period (e.g. hour or half-

hour, etc),  is the active power value of the LPI of the 
jth class of consumer,  is the annual maximum load.  
is the angle of average power factor and  is the number of 
consumer classes. 

In this paper, historical databases of different classes of 
consumers in [22] are used to calculate a profile of load 
demand, with a nominal power of 1 MW of each load bus. 
For a visual demonstration, the active power and reactive 
power of only two selected buses are presented in Fig. 2. 
Correlation about active power of two these buses are 
effectively handled through EM algorithm, and shown in Fig. 
3. 

2.3. PDF of WG 

PDF of WGs is defined by cooperation between wind 
speed model and wind generator model as shown in Fig. 4. 

 
v Wind speed: The GMM approximation from measured 

wind speed data is illustrated in Fig. 5. 

 
v Wind generator model: The wind generator model 

defines its output characteristics and operation status. The 
value of the power generation is determined by the wind 
speed and the  characteristic, with cut-in and cut-
out wind speed at 3m/s and 25 m/s, respectively. 

  (5) 

where  is a coefficient of performance,   is the air 
density, A is rotor swept area, and  is wind velocity. 
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Fig. 2. Probability distributions of nodal active and 

reactive power demands. 
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Fig. 3. Bivariate GMM approximation with three mixture 

components. 
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Fig. 4. Model of power generation from WGs. 
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Fig. 5. GMM approximation for wind speed PDF. 
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The operation status of every WG is in this paper 
described by two discrete PDFs of the probability of failure 
(PF) and the probability of operation (PO). While TF is the 
statistical time in a failure state, TO is in an operation state. 
Their values are given in Table 1. 

  (6) 

 

2.4. Determination of Optimal Control Set-points 

Optimal set-points of all available controllable Var 
sources, reactive power generation of WGs, for minimization 
of the losses should be determined to meet steady-state 
Volt/var operational requirements for every input scenario. 
The mean-variance mapping optimization technique 
(MVMO) in [24] is used to handle the optimization problem 
in this paper. The problem is mathematically formulated as 
follows: 

 

 
(7) 

where   is a sum of the active power losses of all kth line, 
Pk, k=1,…, Nl. Nl is the number of distribution network lines. 
And Pk is calculated as follows: 

 
 (8) 

Subject to 

- Voltage at the buses:  (9) 

- Transformer currents:  (10) 

- Line power flows:  (11) 

- Reactive power of WGs:  (12) 

where Gij is the conductance and  is the difference in the 
voltage angle between the ith bus and jth bus, respectively. 

2.5. Approximation of the Optimal Characteristic Curves of 
WGs 

The predefined number of MC simulation trials offers 
the corresponding number of optimized output scenarios 
from which two-dimensional target data points are taken for 
characteristic line approximation. As a result, 12,500 optimal 
data points (x1..m,y1..m) are available for the approximation 
process. The characteristic curve of the droop control 
methods in this paper evolving either linear or nonlinear 
curve is mathematically formulated as follows: 

v The linear curve: A linear curve can be mathematically 
formulated from two distinct points as shown in (13); 
therefore, the linear curve can be realized by specifying 
two of these distinct points,  and . 

  (13) 

where  is a set of estimated parameters  

which is used to calculate coordinates of points  
and  as shown in Fig. 6 with  . 

 

 
v The nonlinear curve: The nonlinear curve in this paper is 

defined as a linear sum of the predetermined number of 
Gaussian functions. 
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Table 1. Outage time period per WG of the sub-
assemblies [23] 
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The average 
annual 

number of 
failures 

The down-
time per 
failure 
(hour) 

Total 
annual 

hours out  

Electrical unit 0.551 36 19.84 
Control and 
sensors 

0.651 81.6 26.78 

Hydraulics 0.27 31.2 8.42 
Yaw system 0.25 60 15 
Brakes and 
gearbox 

0.33 223.2 34.06 

Generator 0.13 139.2 18.10 
Structure and 
drive train 

0.22 240 25.92 

 

 
Fig. 6. A linear curve through two distinct points A and B. 
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Fig. 7. A curve fitting data points of a function y=sin(x). 
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(14) 

where  is a set of estimated parameters 

, a member of which defines a 

Gaussian function,   is weight, mean, and deviation 
of the ith Gaussian function, respectively and n is the number 
of Gaussian functions. 

v The approach for nonlinear curve approximation: The 
set of estimated parameters  in two cases of linear and 
nonlinear curves presents a non-linear optimization 
problem. This problem can be handled by the non-linear 
least-squares approach. Following this approach, for 
approximating the line  which fits optimal data 
points , the quadratic minimization problem must 
be solved. 

  (15) 

where   

Fig. 7 presents an example of fitting data points derived 
from a function y=sin(x) to illustrate the efficiency of the 
proposed approximation approach and of defining a curve 
through a linear sum of Gaussian functions. 

 

3. Simulation Results and Discussion 

3.1. Test network 

For this study, a generic medium voltage network with a 
rated voltage of a 20 kV distribution test system and with 
four identical feeders fed from a 110 kV transmission system 
is tested. A single-line diagram of the network is shown in 
Fig. 8. Distances of two adjacent buses are equal to 1km. The 
maximum load at every load bus is 1MW. WG generation 

units are connected to bus#5 and #9 with their capacity of 2.0 
MW for each. The transformer with an on-load tap-changer 
is equipped with an automatic voltage regulator (AVR) to 
keep a given voltage set-point on the low voltage side. For 
more details, the specification of the network is displayed in 
Appendix B. 

3.2. Impact of Voltage Set-point of the Transformer 

The voltage set-point is optimal if it cannot only ensure 
network operation in operational and security limits but also 
minimize the losses by setting the network operation close to 
maximum admissible voltage, the upper boundary of ±10% 
nominal voltage in distribution networks. To make sure that 
operating the network in the operational voltage area, the 
voltage set-point of the transformer must be predefined from 
worst-case scenarios, over-voltage worst-case (minimum 
load demand and maximum power generation), and under-
voltage worst-case (maximum load demand and no 
generation). Minimum and maximum load demand were 
calculated and discussed in previous sections. 

 
To study the impact of the voltage set-point, the MC 

simulation is independently performed with three different 
predefined voltage set-points of the transformer, 20.2 kV, 
20.4 kV, and 20.8 kV. The results in response are displayed 
in Fig. 9 (a), (b), (c) respectively, where scattered points are 
optimal data points taken from the output scenarios and black 
dashed line is the approximated characteristic curve.  

It can be seen from Fig. 9 is that shape of the optimal 
characteristic curve is generally unchanged with the variation 
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Fig. 8. One-line diagram of the system under study. 
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of voltage set-point of the transformer, and that magnitude of 
change in the voltage set-point is accompanied by the same 
magnitude in a shift of the curve. 

 
 

3.3. Approximated Characteristic Curves of the Droop 
Control Methods 

The characteristic curves, black dashed curves, in Fig. 10 
are approximated in the case of Vtap=20.4 (kV). Note that 
power factors in Fig. 10 (c) and (d), which are greater than 1, 
indicate that they are inductive power factors. 

Fig. 10 denotes a clear picture of optimal reactive power 
dispatch in the given distribution network. Generally, the 
network always requires reactive power injection from WGs 
for its optimal operation. This makes up a conflict with 
provisions, settled in some grid codes, about the definition of 
the characteristic curve, where WGs must be set for either 
reactive power generation or absorption in operational 
voltage area. 

3.4. Comparative Efficiency between the Droop Control 
Methods 

v The losses: Minimization of the losses is an 
important task in any aspect of power system planning, and it 
is also considered in this paper as the main optimization 
objective. The losses resulting from the droop control 
methods and two cases of 0.95 capacitive and unity fixed PF 
are compared in Table 2. 

 
It can be seen that the losses are reduced the most by the 

implementation of the Q-V voltage droop control method 
into WGs. Approximation of characteristic curves depending 
on linear curves causes increased approximation error from 
ideally optimized curves resulting in slightly higher losses. 
Nonetheless, it may be expected that if the larger reactive 
capacity of WGs may lead to the larger error, these increased 
losses are much higher over the year. 

The PF-V droop control method has recently obtained 
the expectation of engineers in improving control efficiency, 
but the results demonstrated adverse impact. This is because 
reactive power generation of WGs from a full range [0-1] of 
reference PFs to capture the optimal nonlinear curve is not 
fulfilled in many scenarios due to reactive power capacity 
limit of WGs, only 33.33% nominal power of WGs.   

Droop control methods depending on voltage always 
achieve better optimization efficiency than that depending on 
active power generation. This is because voltage can reflect 
the stochastic variation of all input variables such as load 
demand and power generation. 

It can also be seen that the losses in the droop control 
methods are significantly lower than the losses incurred 
when WGs are set by a typical scenario of 0.95 capacitive 
and unity power factor. 

(a) Reactive power versus voltage Q-V (nonlinear curve) 

 
(b) Reactive power versus voltage Q-V (linear curve) 

 
(c) Power factor versus voltage PF-V 

 

(d) Power factor versus active power PF-P 

 
(e) Reactive power versus active power Q-P 

 
Fig. 10. The characteristic lines of WG1 (left side) and 

WG2 (right side) approximated corresponding to the droop 
control methods. 

Table 2. The annual losses (MWh) 

Q-V 

(nonlinear) 

Q-V 

(linear) 
PF-V PF-P Q-P PF=1 

PF=0.95 

(cap.) 

1,155 1,159 1,166 1,184 1,170 1,252 1,226 
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v Voltage profile: Box plot is selected to present 

statistical results of voltage in this paper, because it provides 
a clearer picture of the differences between groups of 
numerical data, as shown in Fig. 11. 

It can be seen that the voltage droop control with Q-V 
linear curves offers the best performance in voltage quality 
due to its narrowest operational voltage area. In contrast, the 
method PF-P in (d) is the worst among the droop control 
methods with an increased risk of overvoltage violation. 

The methods of voltage droop control lead to better 
reduction in voltage variation than these of active power 
droop control. This is because the active power droop control 
methods always ignore the impact of load demand, the 
significant uncertainty. 

4. Conclusion 

This paper introduces the effective framework based MC 
simulation considering all significant uncertainties of the 
distribution network to approximate the optimal 
characteristic curves of droop control methods implemented 
into WGs. Among the droop control methods, the voltage 
droop control with Q-V nonlinear curves presents the best 
performance via its effective ability not only in minimizing 
the losses but also in reducing voltage variation. With 
slightly lower performance, the Q-V linear curve is still 
recommended to apply to the given network due to its 
computational benefit and its easier implementation into 
WGs.  

In comparison to the traditional fixed power factor 
method, the voltage droop control methods present much 
better performance. Therefore it should obtain more attention 
from DNOs. 
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