Maximum Power Point Tracking of Wind Energy Conversion System Using Multi-objective grey wolf optimization of Fuzzy-Sliding Mode Controller

Sami Kahla, Youcef Soufi, Moussa Sedraoui, Mohcene Bechouat


Ongoing electricity demand and the increasing growth of population have become necessary to provide alternative and clean sources of energy. Wind energy is one of the most important sustainable energies but the irregular characters of the primary source, which is characterized by a random wind speed variation, makes the process of control is difficult in order to maximize the power. This paper presents a multi objective grey wolf optimization (MOGWO) of fuzzy sliding mode controller in order to maximize the power captured by wind turbine; meanwhile, the mechanical loads are alleviated for variable speed wind energy conversion system (VS-WECS); firstly, Fuzzy logic theory based sliding mode control is developed by collecting the sliding surface data to reduce the chattering effect caused by the SMC, then  the Grey Wolf Optimization is introduced to solve multi-objectives functions of WECS which are extracting the maximum power and alleviation the mechanical loads in order to find the optimal parameters of Fuzzy-Sliding mode controller to drive the conversion system to the optimal operating point. The obtained results are compared with those given by Sliding mode controller and Fuzzy-Sliding mode controller in which our proposed method can ensure a better dynamic behavior of the WECS.

Total Views: 99


Wind Energy Conversion System WECS; Maximum Power Point Tracking MPTT; Sliding mode control; Fuzzy Logic Control; MO-GWO

Full Text:



R. Saidur , M.R. Islam, N.A. Rahim, and K.H. Solangi , “A review on global wind energy policy”, Renewable and Sustainable Energy Reviews, Vol. 14, No. 7, pp. 1744-1762,2010.

K.C. Tseng and C.C. Huang, “ High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system”, IEEE Trans Ind Electron , Vol.61,No.3,pp.1311-1319,2014.

R. Thresher ,M. Robinson, P. Veers, “The status and future of wind energy technology”, IEEE Power & Energy Magazine, Vol. 5, No. 6, pp. 34-46, December 2007.

S. A. De La Salle, D. Reardon, W. E. Leithead, and M. J. Grimble, “ Review of wind turbine control”, International Journal of Control, Vol. 52, No. 6, pp. 1295-1310, 1990.

S.A. Gradya , M.Y. Hussainia, M.M. Abdullah, “ Placement of wind turbines using genetic algorithms”, Renewable energy, Vol. 30, No. 2, pp. 259-270, 2005.

J. M. Canini, Les différentes technologies pour les générateurs éoliens. In Production Décentralisée et Eolien: Etat et Perspectives, Paris-Nord Villepinte, 2004. Club 15:Réseau d’énergie électrique.

T. Ekelund, Modeling and Linear Quadratic Optimal Control of Wind Turbines. PhD thesis, Chalmers University of Technology, Sweden, April 1997.

P. Novak, T. Ekelund, I. Jovik, and B. Schmidtbauer, “ Modeling and control of variable-speed wind-turbine drive-system dynamics ”, IEEE Control Systems, Vol. 15, No. 4, pp. 28-38, 2005.

X. Ma, Adaptive Extremum Control and Wind Turbine Control. PhD thesis, Danemark, May 1997.

I. Muteanu, N. A. Cutululis, A. I. Bratcu, and E. Ceanga, “ Optimisation of variable speed wind power systems based on LQG approach” , Control Engineering Practice, Vol. 13, No. 7, pp. 903-912, 2005.

R. Rocha, P. Resende, J. L. Silvina, and M. V. Bortolus, “ Control of stall regulated wind turbine through H/sub /splinfin// loop shaping method ”, In Proceedings of the 2001 IEEE Conference on Control Applications, pp 925–929, 5-7 September 2001.

F. D. Bianchi, R. J. Mantz, and C. F. Christiansen, “ Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models ”, Control Engineering Practice, Vol. 13, No. 2, pp. 247-255, 2005.

B. Boukhezzar and H. Siguerdidjane, “ Robust multi-objective control of a variable speed wind turbine ”, European Wind Energy Conference Proceedings, London, UK, 2004.

A. Mullane, G. Lightbody, R. Yacamini, and S. Grimes, “ Adaptive control of variable speed wind turbines” , In 36th Universities Power Engineering Conference, Swansea, UK, 12-24th September 2001.

Y. D. Song, B. Dhinakaran, and X. Y. Bao, “ Variable speed control of wind turbines using nonlinear and adaptive algorithms ” , Journal of Wind Engineering and Industrial Aerodynamics, Vol. 85, No. 3, pp. 293-308, 2000.

W. E. Leithead and B. Connor, “ Control of variable speed wind turbines: design task ”, International Journal of Control, Vol. 73, No. 13, pp. 1189-1212, 2000.

J-J.E. Slotine, and W. Li, Applied Nonlinear Control . London: Prentice-Hall, Inc. 1991.

G. Bartolini , A. Ferrara , E. Usai, E, and V. Utkin , “On multi-Input chattering free second order sliding mode control”, IEEE Transactions on Automatic Control , Vol. 45, No. 9, pp. 1711-1717, 2000.

A. Levant, “Sliding order and sliding accuracy in sliding mode control”, International Journal of Control, Vol. 58, No. 6, pp. 1247–1263, 1993.

L. Fridman , A. Levant and J. Davila, “Observation of linear systems with unknown inputs via high-order sliding-modes ”, International Journal of Systems Science,Vol.38,No.10,pp.773-791,2007.

V.Utkin, and H. Lee, “Chattering problem in Sliding Modes Control Systems”, IFAC Proceedings Volumes,Vol.39,No.5,pp.1,2007.

M. Bechouat ,Y. Soufi , M, SedraouiM, and S. Kahla, “ Energy storage based on maximum power point tracking in photovoltaic systems: a comparison between Gas and PSO approaches”, International Journal of Hydrogen Energy, Vol.40,No.39,pp.13737-13748,2015.

J. Nanda, S. Mishra, and L. C. Saikia ,“ Maiden application of bacterial foraging-based optimization technique in multi-area automatic generation control” , IEEE Transactions on Power Systems, Vol.24,No.2,pp.602-609,2009.

U.K. Rout, R.K. Sahu, and S. Panda, “ Design and analysis of differential evolution algorithm based automatic generation control for interconnected power system”, Ain Shams Engineering Journal, Vol.4,No.3,pp.409-421,2013.

R.K. Sahu, S. Panda, and S. Padhan, “Optimal gravitational search algorithm for automatic generation control of interconnected power systems ”, Ain Shams Engineering Journal, Vol.5,No.3,pp.721-733,2014.

Y. Soufi , S. Kahla, and M. Bechouat , “ Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by PMSG connected to the grid ”, International journal of hydrogen energy, Vol. 41,No.45, pp.20950–20955, 2016.

Y. Soufi , S. Kahla , and M. Bechouat, “ Particle swarm optimization based sliding mode control of variable speed wind energy conversion system ” , International Journal of Hydrogen Energy, Vol. 41, No.45, pp. 20956–20963, 2016.

S. Debbarma, L.C. Saikia, and N. Sinha, “ Solution to automatic generation control problem using firefly algorithm optimized IλDμ controller” , ISA Transactions, Vol. 53,No.2,pp.358–366,2014.

D. Puja, S.L. Chandra, and S. Nidul, “ Comparison of performances of several cuckoo search algorithm based 2DOF controllers in AGC of multi-area thermal system” , International Journal of Electrical Power & Energy Systems, Vol.55, pp.429–436.2014.

J.S. González, M.B. Payán, J.R. Santos, and A.G.G. Rodriguez, “ Maximizing the overall production of wind farms by setting the individual operating point of wind turbines ”, Renewable Energy, Vol.80,pp. 219-229, 2015.

X. Gaoa, H. Yanga, L. Lina, and P. Koob, “ Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore ”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.139, pp. 89-99, 2015.

S. Kahla, Y. Soufi , M. Sedraoui , and M. Bechouat , “ On-Off control based particle swarm optimization for maximum power point tracking of wind turbine equipped by DFIG connected to the grid with energy storage ”, International Journal of Hydrogen Energy, Vol. 40,No.39,pp. 13749-13758, 2015.

S. Mirjalili , S.M. Mirjalili , and A. Lewis , “ Grey wolf optimizer ”, Advances in Engineering Software, Vol.69, pp.46–61, 2014.

S. Gholizadeh, “Optimal design of double layer grids considering nonlinear behaviour by sequential grey wolf algorithm”, Journal of Optimization in Civil Engineering, Vol. 5, No. 4, pp.511–523, 2015.

A. A. El-Fergany, and H. M. Hasanien, “Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms ”, Electric Power Components and Systems, Vol. 43, No. 13, pp. 1548–1559, 2015.

R. Krishnat, M. Dubal , and S. Dattatray , “ Maximum power point tracking system for wind generator using MATLAB ”, International Journal of Engineering and Computer Science,Vol.4,No.1,pp.10043–10050, 2015.

H. Jadhav H, and R. Ranjit R, “ Comprehensive review on the grid integration of doubly fed induction generator ”, International Journal of Electrical Power & Energy System,Vol.49,pp. 8–18, 2013.

B. Boukhezzar , and H. Siguerdidjane, “ Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization” , Energy Conversion and Management, Vol.50,No.4,pp.885-892, 2009.

F. Poitiers, M. Machmoum, and R. Le Doeuff, “ Simulation of wind energy conversion system based on a doubly-fed induction generator ”, In 10th European Conference on Power Electronics and Applications, Toulouse, France, September 2003.

K. Idjdarene ,D. Rekioua ,T. Rekioua , and A. Tounzi , “ Wind energy conversion system associated to a flywheel energy storage system ” , Analog Integrated Circuits and Signal Processing,Vol.69,No.1,pp.67-73, 2011.

R. Datta , and V.T. Ranganthan V T, “ Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes ”, IEEE Transactions on Energy Conversion, Vol.17,No.3,pp. 414–421,2002.

R.A. DeCarlo , S.H. Zak, and S.V. Drakunov , Variable structure, sliding-mode controller design, The Control Handbook (2 ed). Ed. W.S. Levine. Boca Raton, London, New York: CRC Press,2010, pp. 941-951.

I. Munteanu , A.I. Bratcu , N.A. Cutululis , and E Ceang, Optimal control of wind energy systems: towards a global approach, Springer, 2008.

S. Mirjalili , S. Shahrzad , S.M. Mirjalili , L.D.S. Coelho , “ Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization” , Expert Systems with Applications, Vol.47, pp.106–119, 2016.


  • There are currently no refbacks.

Online ISSN: 1309-0127;;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)