Performance of Zn-Cu and Al-Cu Electrodes in Seawater Battery at Different Distance and Surface Area

Adi Susanto, Mulyono Sumotro Baskoro, Sugeng Hari Wisudo, Mochammad Riyanto, Fis Purwangka


Seawater battery is one of the green electricity sources to fulfilled energy needs for several equipments, especially in the coastal area and fishing activities. The application of this technology is still limited because of the high cost in the electrode production. This study was analyzed the performance of Zn-Cu and Al-Cu electrode as cheap material to generate electricity from sea water in the different distance and surface area.  The results shown zinc anode produced higher voltage and current than aluminium anode with number of 839 mV and 1.75 mA respectively. Increasing of surface area at the same distance will increase the current output for each materials. Distance of electrode affect to the current density, but it causes fluctuation at the voltage. Application of zinc anode with higher surface area and short distance will generate high voltage and current output in the salt water battery.

Full Text:



J. K. Kim, F. Mueller, H. Kim, D. Bresser, J. S. Park, D. H. Lim, G. T. Kim, S. Passerini, Y. Kim, “Rechargeable-hybrid-seawater fuel cell”, NPG Asia Materials, DOI: 10.1038/am.2014.106, Vol. 6, pp. 1-7, 2014.

Z. Hongyang, B. Pei, J. Dongying, “Electrochemical performance of magnesium alloy and its application on the sea water battery”, Journal of Environmental Sciences, Supplement, pp.S88–S91, 2009.

K. Yu, H.-Q. Xiong, L. Wen, Y.-L. Dai, S-H. Yang, S-F. Fan, F. Teng, X-Y. Qiao, “Discharge behavior and electrochemical properties of Mg-Al-Sn alloy anode for seawater activated battery”, Transactiono of Nonferrous Metals Society of China, DOI: 10.1016/S1003-6326(15)63720-7, Vol. 25, pp. 1234-1240, 2015.

M. Kar, B. Winther-Jensen,, M. Forsythc, and D. R. MacFarlanea, “Exploring zinc coordination in novel zinc battery electrolytes”, Physical Chemistry Chemical Physics, DOI: 10.1039/C4CP00749B, Vol. 16, pp. 10816-10822, 2014.

O. Hasvold, “Seawater cell with increased efficiency”, U.S. Patent 5 405 717, Apr. 11, 1995.

B. Mandal, A. Sirkar, A. Shau, P. De, P. Ray, “Effects of geometry of electrodes and pulsating DC input on water splitting for production of hydrogen”, International Journal of Renewable Energy Research, Vol. 2, pp. 99-102, 2012.

S. Ramakanth, “Cheaper electrodes having higher efficiency using salt water and salt vinegar electrolytes”, International Journal of Innovative Research and Development, Vol. 1, pp. 310-322, 2012.

R. Hahn, J. Mainert, F. Glaw, K. D. Lang, “Sea water magnesium fuel cell power supply”, Journal of Power Sources, DOI: 10.1016/j.jpowsour.2015.04.119, Vol. 288, pp. 26-35, 2015.

N. Ueoka, N. Sese, M. Sue, A. Kouzuma, K. Watanabe, “Sizes of anode and cathode affect electricity generation in rice paddy-field microbial fuel cells. Journal of Sustainable Bioenergy Systems, DOI: 10.4236/jsbs.2016.61002, Vol. 6, pp. 10-15, 2016.

D.R. Egan, C. Ponce de León a,*, R.J.K. Wood, R.L. Jones, K.R. Stokes, F.C. Walsh, “Developments in electrode materials and electrolytes for aluminium air batteries”, Journal of Power Sources, DOI: 10.1016/j.jpowsour.2013.01.141, Vol. 236, pp. 293-310. 2013

M. Dornajafi, M. B. Proctor, D. A. Lowy, Z. Dilli, M. C. Peckerar, “Zinc-water battery and system,” U.S. Patent US 2013/0108935 A1, May. 2, 2014.

S. K. Guchhait, S. Paul, “Electrochemical characterization of few electro-synthesized fuel cell electrodes to producing clean electrical energy from alternative fuel resources”, Internatıonal Journal of Renewable Energy Research. Vol. 6, No. 2, pp. 723-734, 2016.

B. H. Kim, I. S. Chang, G. M. Gadd, “Challenges in microbial fuel cell development and operation”, Applied Microbiology and Biotechnology, Vol. 76, pp. 485-494, 2007.

M. Imaduddin, Hermawan, Hadiyanto, “Pemanfaatan sampah sayur pasar dalam produksi listrik melalui microbial fuel cells”, Media Elektrika, Vol. 7 pp. 22-35, 2014 in Indonesian with Engslih abstract.

J. P. Iudice de Souza and W. Vielstich, “Seawater aluminum/air cells in Handbook of fuel cells – fundamentals, technology and applications”, Edited by Wolf Vielstich, Hubert A. Gasteiger, Arnold Lamm and Harumi YokokawaJohn Wiley & Sons, Ltd. pp 1-7. Ch 1. 2010

M. Pino, D. Herranz, J. Chacon, E. Fatás, P. Ocόn, “Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte”, Journal of Power Sources, DOI: 10.1016/j.jpowsour.2016.06.118, Vol. 326, pp. 296-302, 2016.

S-W Im, H-J Lee, J-W Chung, Y-T Ahn, “The effect of electrode spacing and size on the performance of soil microbial fuel cells (SMFC)”. Journal Korean Society Environment Engginering, Vol. 36 No. 11, pp. 758-763, 2014 in Korean with English abstract.

Y. H. Huang, P. J. Huang, C. H. Huang, T. T. Kuo, “Battery with inert electrodes and method for generating electrical power using the same”, U.S. Patent US 2014/0322564 A1, Oct. 30, 2014.




  • There are currently no refbacks.

Online ISSN: 1309-0127;;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Thomson Reuters)